
A visual and performance comparison of
atmospheric scattering models

November 1, 2025

Author
Dimas Leenman

(0513502)

First Supervisor
Peter Vangorp

Study Programme
master Computing Science

Utrecht University

Second Supervisor
Alex Telea

Contents
1. Abstract . 1
2. Introduction . 1
3. Atmospheric scattering . 1

3.1. Coordinate system . 1
3.2. Physics of scattering . 2

4. Path tracing . 4
4.1. Finding the scattering position . 4
4.2. Light contribution . 5
4.3. Phase function . 6
4.4. Final color . 6

5. Previous work . 6
5.1. Single scattering . 6
5.2. Multiple scattering . 11
5.3. Fitted models . 12

6. Research goals . 14
7. Assumptions . 14

7.1. Model parts . 14
7.2. Coordinate space . 15

8. Ground truth . 15
9. Automatic model finding . 16

9.1. Reference data . 16
9.2. Observations . 17
9.3. symbolic regression . 17
9.4. Kolmogorov-Arnold networks . 17
9.5. Polynomial fit . 17
9.6. Neural networks . 18

9.6.1. Transmittance . 18
9.6.2. Scattering . 18
9.6.3. Implementation as atmosphere . 18

10. Manual modeling . 19
10.1. Flat homogeneous atmosphere . 19
10.2. Spherical atmosphere . 20
10.3. Looking down . 21
10.4. Views from space . 23
10.5. Ozone layer . 23
10.6. Multiple scattering . 24

11. Evaluation . 24
11.1. setup . 24
11.2. Implemented models . 24

11.2.1. Empty shader . 25
11.2.2. Path traced reference . 25
11.2.3. Bruneton and Neyret . 25
11.2.4. Hillaire . 25
11.2.5. Preetham, Shirley and Smits . 25
11.2.6. Naive . 25
11.2.7. Schuler . 25

11.2.8. Neural network . 26
11.2.9. Flat . 26
11.2.10. Raymarched . 26

11.3. Transmittance . 26
11.3.1. Reference . 26
11.3.2. Neural network . 26
11.3.3. Flat . 26

11.4. viewer, light, and exposure . 27
11.5. Visual comparison . 27
11.6. Performance comparison . 28
11.7. Implementation complexity . 28

12. Results . 29
12.1. Visual . 29

12.1.1. Bruneton and Neyret, Hillaire . 29
12.1.2. Naive and Schuler . 30
12.1.3. Raymarched and Flat . 32
12.1.4. Raymarched and Naive . 35
12.1.5. Flat and Preetham, Shirley and Smits . 35
12.1.6. Neural network . 37

12.2. Transmittance . 39
12.3. Performance . 41

12.3.1. NVIDIA . 41
12.3.2. AMD . 42
12.3.3. Steamdeck . 43
12.3.4. Intel . 44

12.4. Implementation complexity . 45
12.5. Overall . 46

13. Conclusion . 46
14. Future work . 47
References . 47
A: FLIP errors . 51
B: RMSE errors . 51
C: FLIP errors, transmittance . 52
D: RMSE errors, transmittance . 52
E: Link to code repository . 52
F: Links to shadertoy versions of shaders . 52

1. Abstract
Previous models of atmospheric scattering have either utilized an analytical fitted function,
limiting the viewer to the ground, or a number of lookup tables improve runtime
performance.

This work introduces 3 new models, one neural network based model that supports both
ground and space views, one analytical model that does not require fitting on reference data,
and one model using an approximation of the transmittance tables.

The new models are compared to the existing models, as well as a path traced reference, on
visual accuracy, runtime performance, and implementation complexity.

2. Introduction
As games become increasingly more realistic, more accurate visual effects are needed to
render them. In games such as Microsoft Flight Simulator (Microsoft Flight Simulator 2024,
n.d.), DCS (Digital Combat Simulator World, n.d.), and the Scatterer mod for Kerbal Space
Program (blackrack, n.d.) the atmosphere is an important element to get right. Other games,
such as Gran Turismo 7 (Suzuki & Yasutomi, 2023) make use of a complex sky simulation to
ensure both the sky itself and resulting lighting looks correct. This work introduces 3 new
models of atmospheric scattering that attempt to improve over existing methods.

Figure 1: Microsoft Flight Simulator, Scatterer and Gran Turismo 7

3. Atmospheric scattering
All particles in the atmosphere of the earth affect how light is scattered inside it. When a
photon hits a particle, it can either be scattered into a new direction, or absorbed. Which of
these events happen, depends on the wavelength of the photon, as well as the type and size of
the particle. For every photon, these events can happen 0 times, 1 time, referred to as single
scattering, or more than once referred to as multiple scattering.

Before going over previous work, it may prove useful to provide a standard set of symbols,
coordinates, as well as a short introduction on the physics behind atmospheric scattering.

3.1. Coordinate system
The figure below shows the coordinates used for a viewer 𝑣 at height ℎ in an atmosphere,
with light coming from light source 𝑙. The coordinate system for this is described below.

1

𝑟

ℎ

𝜃𝑣𝜃𝑙

𝛾𝑙

𝑣

𝑝𝑙 𝑝𝑣

Figure 2: Viewer 𝑣 in an atmosphere.

Radius 𝑟 The radius of the planet

Height ℎ The height viewer 𝑣 is from the surface

View zenith 𝜃𝑣 The angle between the surface normal, and view direction

Sun zenith 𝜃𝑙 The angle between the surface normal, and the light direction

Angle 𝛾 The angle between the view direction, and light direction

Table 1: Coordinates

3.2. Physics of scattering
This section provides a basic overview of the physics behind a photon scattering in an
atmosphere. A possible path of a photon scattering from light source 𝑙 towards viewer 𝑣 can
be seen below.

𝜃𝑠

𝑙

𝑣 𝑎 𝑏

Figure 3: Viewer 𝑣 in an atmosphere.

Here, path 𝑎 represents a path with only one scatter event, where the photon scatters at an
angle 𝜃𝑠. Path 𝑏 represents a path with multiple scattering events.

When light travels through the atmosphere, it is attenuated based on the density of the
atmosphere it travels through. Given a density function 𝜌(ℎ) that depends on height ℎ from
the surface, the optical depth 𝜏 from viewer 𝑣, with direction 𝜃𝑣 can then be calculated with
the following integral:

2

𝜏 = ∫
𝑏

𝑎
𝜌(√𝑡2 + ℎ2 + 2ℎ𝑡 cos 𝜃𝑣)𝑑𝑡 1.

Where 𝑎 and 𝑏 are the start and end points of the ray respectively. For 𝜌(ℎ), most other
implementations discussed in chapter 5 use the exponential function for the density of the
medium:

𝜌(ℎ) = exp(− ℎ
ℎ0

) 2.

Here, ℎ0 is the scale height, which determines how fast the density falls off based on height.

For ozone, (Bruneton, 2017a) and (Hillaire, 2020) use the following density:

𝜌(ℎ) = max(0, 1 − |ℎ − 25|
15

) 3.

Where ℎ is in kilometers.

The transmittance 𝑇 , which indicates how much light is attenuated, can then be calculated as
follows:

𝑇 = exp(−𝛽𝑎𝜏) 4.

Where 𝛽𝑎 is the absorption coefficient, which determines how much of the light is absorbed.

Transmittance 𝑇 represents how much light is attenuated for a single path in the atmosphere,
but does not take scattering into account. When a photon scatters, it changes direction. The
new direction is not uniform, and depends on a phase function 𝐹(𝜃𝑠). The phase function
used depends on the scattering medium. For Mie scattering, which is used to model aerosols,
a common phase function to use is the Cornette-Shanks phase function described by
(Cornette & Shanks, 1992). This phase function is used by (Bruneton & Neyret, 2008), (Fong
et al., 2017), (Nishita et al., 1993) and others. It is shown below.

𝐹(𝜃𝑠) =
3
8𝜋

(1 − 𝑔2)(1 + cos2 𝜃𝑠)
(2 + 𝑔2)(1 + 𝑔2 − 2𝑔 cos 𝜃𝑠)

3
2

5.

An alternative phase function used by (Pharr et al., 2016) is the Henyey-Greenstein phase
function, described by (Henyey & Greenstein, 1941) can be seen below:

𝐹(𝜃𝑠) =
1
4𝜋

1 − 𝑔2

(1 + 𝑔2 + 2𝑔 cos 𝜃𝑠)
3
2

6.

Here, 𝑔 determines how directional the phase function is, with values near 1 being more
directional, and thus photons less likely to significantly change direction upon scattering. For
Rayleigh scattering, 𝑔 = 0 is typically used. (Hillaire, 2020) uses an isotropic phase function
instead, shown below:

𝐹(𝜃𝑠) =
1
4𝜋

7.

Using the phase function, it is now possible to calculate the transmittance for the entire path
that light can take through the scattering medium. For a path with a single scattering event,
the total radiance 𝐿scatter reaching the viewer can be calculated as follows:

3

𝐿scatter = 𝐸light𝐹(𝜃𝑠)𝛽𝑠𝜌(ℎ𝑠)𝑇𝑠𝑇𝑙 8.

Where 𝛽𝑠 is the scattering density coefficient, ℎ𝑠 is the height at which the scatter event
takes place. 𝑇𝑠 is the transmittance from the viewer to the scattering point, 𝑇𝑙 is the
transmittance from the scattering point to the light source, and 𝐸light is the incident radiance
coming from the light source. Note that when the path between the scattering point and the
light source is obstructed, 𝐸light = 0.

In order to take multiple media types into account, their transmittance must be combined.
This is done by multiplying all transmittance from all media types together. 𝐿scatter calculates
the resulting radiance from scattering for only one medium type, and thus needs to be
calculated for all media types as well. An example of the total radiance 𝐿total due to
scattering from two scattering media 𝑚 and 𝑟, with respective phase functions,
transmittance, scattering densities and density functions can be seen below:

𝐿total = 𝐸light𝐹𝑚(𝜃𝑠)𝛽𝑚
𝑠 𝜌𝑚(ℎ𝑠)𝑇𝑚

𝑠 𝑇 𝑟
𝑠 𝑇𝑚

𝑙 𝑇 𝑟
𝑙 +𝐸light𝐹 𝑟(𝜃𝑠)𝛽𝑟

𝑠𝜌𝑟(ℎ𝑠)𝑇𝑚
𝑠 𝑇 𝑟

𝑠 𝑇𝑚
𝑙 𝑇 𝑟

𝑙 9.

When calculating the radiance of a path with multiple scattering events, Equation 8 can be
applied recursively, where 𝐸light is replaced by another invocation of 𝐿scatter.

4. Path tracing
Path tracing is a brute force method that attempts to calculate all possible paths a photon
can take when scattering in an atmosphere. For this reason, it is often used as a reference
when implementing other models of atmospheric scattering. (Hillaire, 2020), (Bruneton,
2017b) and (Wilkie et al., 2021) use a path tracer as a reference. (Suzuki & Yasutomi, 2023),
(Hosek & Wilkie, 2012) and (Preetham et al., 1999) instead use it to fit a model to the result
of a path tracer.

The path tracer described here is the implementation provided by (Hillaire, 2020), and was
tested against (Pharr et al., 2016) for correctness. The implementation is based on (Fong et
al., 2017).

As it is infeasible to compute all possible photon paths, the final image is created using
Monte-Carlo integration. This is done by averaging many different, random photon paths into
a final color value for the pixel.

4.1. Finding the scattering position
In order to find a point at which a scattering or absorption event occurs, delta tracking is
used (Neumann, 1951). Delta tracking is an extension of closed-form tracking (Eckhart,
1987), which is used for homogeneous volumes. Tracking allows importance sampling any
homogeneous volume with exponential attenuation according to Beer’s law

𝑇 = exp(−𝛽𝑡) 10.

Where 𝑡 is the length of the path the photon takes through the volume, and 𝛽 is the volume
density.

Tracking can then be used to determine the distance 𝑡′ that the photon travels before being
scattered, using Equation 11, where 𝜉 is a uniform random number where 0 ≤ 𝜉 ≤ 1.

𝑡′ = −ln(1 − 𝜉)
𝛽

11.

4

As the atmosphere is modeled as an exponentially decaying density based on height from the
surface, the tracking method cannot be used there. Instead, it is modified to take this density
into account, which results in delta tracking. When a photon scatters at distance 𝑡′ along its
path, but the density 𝜌 at this point is 0, no scattering can happen. This is instead treated as
a scattering event where the photon continues to travel in the same direction. If the density
𝜌 > 0, delta tracking only considers a scatter event to happen if Equation 12 holds, where
𝜌max is the highest density that can be found in the volume.

𝜉 < 𝛽𝜌
𝛽𝜌max

12.

If this does not hold, delta tracking is performed again, using the predicted scattering
position derived from 𝑡′ as starting point. In case of absorption, the photon path does not
scatter any light, and thus no light is added, and no further scattering events are considered.
A minimal example of delta tracking can be seen below:

vec3 delta_tracking(vec3 start, vec3 dir) {
 while (true) {
 float xi = random();
 float zeta = random();
 float t = -ln(1.0 - xi) / rho_max;
 if (zeta < beta * volume_density(start + dir * t) / (beta * rho_max)) {
 // scatter event, return where
 return start + dir * t;
 } else if (length(start + dir * t) > max_distance) {
 // outside of volume, stop
 return start - dir;
 } else {
 start = start + dir * t;
 }
 }
}

Listing 1: Delta tracking

At the found scattering position, it is assumed that both a photon from the light source
scatter here, as well as a photon from another scattering event in the atmosphere.

In order to combine multiple types of media with different scattering or absorption
properties, 𝜌max becomes the sum of all the 𝜌 of the different types of volumes. Then, when
testing for a scattering event, each of the 𝜌 is assigned an interval. If 𝜉 is within that interval,
there is a scattering event or absorption event for that medium.

4.2. Light contribution
The contribution of light to this scattering event can be computed in several ways. It is
possible to perform delta tracking towards the light source, and if no scattering event
happens, the light contribution is equal to 𝐹(𝜃𝑠). It is also possible to compute transmittance
𝑇 instead, calculating the optical depth using numerical integration directly, using a lookup
table, or using ratio tracking, as described by (Novák et al., 2014).

Ratio tracking is a modification of delta tracking, where instead of testing whether there is a
scattering event at each predicted scattering event at distance 𝑡`, the attenuation 𝑇 ,
initialized with 1, is multiplied by Equation 13

5

1 − 𝛽𝜌(ℎ)
𝛽𝜌max

13.

The resulting transmittance is then multiplied by 𝐹(𝜃𝑠), and added to the final color of this
path. A minimal example of ratio tracking is as follows:

float ratio_tracking(vec3 start, vec3 dir) {
 float T = 1.0;
 while (true) {
 float xi = random();
 float t = -ln(1.0 - xi) / rho_max;
 start = start + dir * t;
 if (length(start) > max_distance) {
 // outside of volume, stop
 break;
 }
 T *= 1.0 - beta * volume_density(start) / (beta * rho_max);
 }

 return T;
}

Listing 2: Ratio tracking

Performing these steps once results in single scattering.

4.3. Phase function
In order to perform multiple scattering, these steps are repeated with a new direction for the
photon path, up to 𝑁 times, where 𝑁 is the scattering order. This new direction is chosen by
importance sampling the phase function. For both Rayleigh and Mie scattering, no
importance sampling is done. However, for both the Cornette-Shanks phase function is used,
with Rayleigh scattering using 𝑔 = 0.

It is possible to importance sample a phase function, as (Pharr et al., 2016) explains for the
Henyey-Greenstein phase function in in chapter 15.2.3: Sampling phase Functions.

4.4. Final color
As each path is calculated for a single wavelength of light, it needs to be repeated for each
wavelength. To then eliminate noise in the image, this needs to be repeated several times as
well. The implementation provided by (Hillaire, 2020) simply selects the red, green, or blue
color channel at random, by drawing from a uniform random distribution. Based on the color
channel that was selected, different values for the scattering density 𝛽 are selected. The other
two color channels are then set to 0 for this contribution. This is then repeated many times,
and the average of this process is used as final color for the specified pixel.

5. Previous work
A number of methods have been developed for rendering atmospheric scattering in real time.
This section provides an overview of various methods that have been developed for this
purpose, as well as how these methods relate to each other.

5.1. Single scattering
The work discussed in this section covers implementations of the physics discussed in
Chapter 3, assuming only single scattering occurs. Most of the focus is put on efficiently

6

evaluating the optical depth 𝜏 , from Equation 1, as using numerical integration of it results
in a large amount of evaluations of 𝜌(ℎ). This can quickly become prohibitively expensive.

One of the earlier models for atmospheric scattering was developed in (Nishita et al., 1993),
in order to view an atmosphere from space. (O'Neil, 2005) later shows that this technique can
be adapted to work from a ground view as well.

In order to keep the computational cost down, (Nishita et al., 1993) assumes that multiple
scattering can be ignored as it has a negligible effect. They also assume absorption due to
ozone is negligible, and that the density of the air falls off exponentially, as follows:

𝜌(ℎ) = exp(− ℎ
ℎ0

) 14.

(Nishita et al., 1993) assumes only two types of scattering can happen. Rayleigh scattering,
for smaller particles, and Mie scattering, for larger particles. For both types of scattering,
they opt to use the Cornette-Shanks phase function as described in (Cornette & Shanks,
1992):

𝐹(𝜃𝑠) =
3
8𝜋

(1 − 𝑔2)(1 + cos2 𝜃𝑠)
(2 + 𝑔2)(1 + 𝑔2 − 2𝑔 cos 𝜃𝑠)

3
2

5.

For Rayleigh scattering, they assume 𝑔 = 0. For Mie scattering, it is assumed that0.7 ≤ 𝑔 ≤
0.85. The scale heights ℎ0 are set to ℎ𝑟

0 = 7994𝑚 and ℎ𝑚
0 = 1200𝑚 for Rayleigh and Mie

respectively.

In order to reduce computational complexity, (Nishita et al., 1993) precomputes the optical
depth, and stores it in a 2D lookup table. Recall the equation for the optical depth:

𝜏 = ∫
𝑏

𝑎
𝜌(√𝑡2 + ℎ2 + 2ℎ𝑡 cos 𝜃𝑣)𝑑𝑡 1.

When assuming that the integral starts at the viewer’s position on the view ray, and ends at
infinity, and the air density falls of exponentially, it can be rewritten as follows:

𝜏 = ∫
∞

0
exp(

√𝑡2 + ℎ2 + 2ℎ𝑡 cos 𝜃𝑣
ℎ0

)𝑑𝑡 15.

As the scale height does not change often, it can be assumed that the integral now only
depends on the height of the viewer ℎ, and the view direction 𝜃𝑣. This allows these
parameters to be used as axes in the 2D lookup table.

For the height, 𝑁 values of ℎ𝑖 are chosen, with a spacing of

ℎ𝑖 = ℎ0 log(
1 − 𝑖
𝑁

) + ℎ 16.

Where ℎ𝑖 is the height used to compute the 𝑖th row of the lookup table. Then, the columns
of the lookup table, which depend on the viewing angle, also have to be computed. This is
done by taking the heights ℎ𝑖, and imagining them as spheres around the center of the
planet. Then, a number of cylinders, aligned to the light direction is swept through the
spheres. The index of the sphere, and the index of the cylinder are then used to look up the
row and column of the lookup table.

7

To calculate the optical depth, trapezoidal integration is used.

To arrive at a final color for the red, green, and blue color channels, the equation shown in
Equation 9 is evaluated for a number of points along the view path, and added together.

𝐿total = 𝐸light𝐹𝑚(𝜃𝑠)𝛽𝑚
𝑠 𝜌𝑚(ℎ𝑠)𝑇𝑚

𝑠 𝑇 𝑟
𝑠 𝑇𝑚

𝑙 𝑇 𝑟
𝑙 +𝐸light𝐹 𝑟(𝜃𝑠)𝛽𝑟

𝑠𝜌𝑟(ℎ𝑠)𝑇𝑚
𝑠 𝑇 𝑟

𝑠 𝑇𝑚
𝑙 𝑇 𝑟

𝑙 9.

This is then done for every pixel in the output image.

The transmittance for the light direction is calculated using the optical depth stored in the
lookup table. The transmittance for the view direction is calculated using trapezoidal
integration, as this can be performed at the same time the radiance is accumulated.

From here on, the work of (Nishita et al., 1993) remains used as a base for single scattering.
Most of the variations presented next vary from their implementation in the manner of how
they implement the numerical integration of the optical depth integral.

(O'Neil, 2004) presents a different formulation of the lookup table that (Nishita et al., 1993)
uses. Instead of using the spheres intersecting the cylinders, it is possible to simply divide the
height between ℎ = 0 and ℎ = 𝑟𝑎, where 𝑟𝑎 is a defined radius of the atmosphere. Then when
looking up the value, (O'Neil, 2004) linearly interpolates between the entries in the lookup
table for the specific height. For the view angle, they use the result of cos 𝜃𝑣 to map to a
column in the lookup table.

Besides storing the optical depth for Rayleigh and Mie, (O'Neil, 2004) also stores the density
𝜌(ℎ) for Rayleigh and Mie in the lookup table. If the view path for the optical depth
intersects the planet, this is set to 0, which emulates the effect of a planet shadow.

Then, in order to compute the transmittance of the view path segment, the lookup table is
used again, and the segment optical depth is calculated the same way as (Nishita et al., 1993)
does it. However, if the view path intersects the planet, the view direction the lookup table is
sampled with is rotated by 180°, and the order in which they are subtracted is swapped. This
avoids floating point precision errors due to a very large optical depth.

Later, (O'Neil, 2005) modifies their previous work in (O'Neil, 2004) to run on the GPU.
Instead of performing the full calculation for each pixel, they move it to the vertex shader,
and let the GPU interpolate between vertices to get the final per pixel result. The phase
functions 𝐹(𝜃𝑠) are however calculated per pixel, as this resolves some artifacts.

As GPUs at the time did not have the ability to read from a texture from the vertex shader,
it is not possible to use a lookup table. Instead, (O'Neil, 2005) finds that it is possible to
approximate the optical depth using a different formula. For the height, they find that
exp(−4ℎ) is a common factor for all view angles. For the view angles, they find that taking
the logarithm of the view angle results in an unknown curve, and fit a polynomial to this
curve. This results in the following equation:

𝜏 = exp(−𝑠1ℎ)𝑠2 exp(5.25𝑥4 − 6.80𝑥3 + 3.83𝑥2 + 0.459𝑥 − 0.00287) 17.

Where 𝑠1 and 𝑠2 are constants that depend on the atmosphere parameters. Of note is that
this equation for optical depth only works for one combination of planet radius 𝑟 and scale
height ℎ0. If these are changed, the polynomial and 𝑠1 and 𝑠2 have to be fit again. Using this,
(O'Neil, 2005) implements their single scattering the same way as described in (O'Neil, 2004).

Besides the polynomial approximation (O'Neil, 2005) finds for the optical depth, there has
also been work in physics literature to solve a similar problem. The result is the Chapman

8

function Ch(𝑥, 𝜒), first introduced in (Chapman, 1931). As this function cannot be computed
exactly, other approximations have been formulated, such as by (Kocifaj, 1996), (Yue, 2024).
A more general overview can be found in (Vasylyev, 2021).

(Schuler, 2012) derives a new approximation of the Chapman function, that is simpler and
more numerically stable when implemented using 32 bit floating point. (Schuler, 2012) first
starts with the Chapman function presented in (Kocifaj, 1996):

Ch(𝑥, 𝜒) = 1
2
[cos 𝜒 + exp(𝑥 cos2 𝜒

2
)erfc(√𝑥cos2 𝜒

2
)(1

𝑥
+ 2 − cos2 𝜒)√𝜋𝑥

2
] 18.

Where

𝑥 = 𝑟 + ℎ
ℎ0

, and 𝜒 = 𝜃𝑣 19.

The optical depth from viewer 𝑣 can then be calculated as follows:

𝜏 = Ch(𝑟 + ℎ
ℎ0

, 𝜃𝑣)exp(− ℎ
ℎ0

) 20.

In order to simplify Equation 18, (Schuler, 2012) makes the following assumptions:

Ch(𝑥, 𝜒) = Ch(𝑥,−𝜒), Ch(𝑥, 0) = 1, and lim
𝑥→∞

Ch(𝑥, 𝜒) = 1
cos 𝜒

21.

Using this, they find an approximation that works well when 𝜒 < 90°:

Ch′(𝑐, 𝜒) ≈ 𝑐
1 + (𝑐 − 1) cos 𝜒

if 𝜒 < 90° 22.

where 𝑐 = Ch(𝑥, 90°). In order to then derive the Chapman function for 𝜒 > 90°, it is possible
to restructure the problem. The optical depth from the viewer to infinity is the same as the
optical depth from infinity behind the viewer to infinity in front of the viewer. Then, by
subtracting the optical depth from the viewer to infinity behind the viewer, the optical depth
from the viewer to infinity can be calculated. This is expressed as follows:

Ch(𝑥, 𝜒) = 2 exp(𝑥 − 𝑥 sin 𝜒) Ch(𝑥, 90°) − Ch(𝑥, 180° − 𝜒) 23.

This means, if Ch(𝑥, 𝜒) is known for 𝜒 < 90°, it is also known for 𝜒 ≥ 90°. Rewriting
Equation 20, Equation 22, and Equation 23, as it is desired to calculate the optical depth
without precision errors, results in the following equation for optical depth:

𝜏Ch =

{{
{{
{
{{
{{ exp(− ℎ

ℎ0
) 𝑐
1 + 𝑐 cos 𝜃𝑣

if 𝜃𝑣 < 90°

− exp(− ℎ
ℎ0

) 𝑐
1 − 𝑐 cos 𝜃𝑣

+ 2√𝑥0 exp(
𝑟
ℎ0

− 𝑥0) otherwise
24.

Where

𝑐 = √𝑟 + ℎ
ℎ0

, and 𝑥0 = √1 − cos2 𝜃𝑣(
𝑟 + ℎ
ℎ0

) 25.

9

(Schuler, 2012) then uses 𝑇Ch for the optical depth to implement a single scattering
atmosphere, similar to how (Nishita et al., 1993), and (O'Neil, 2004) have done it.

Of note is another approximation to optical depth by (Bruneton & Neyret, 2008). While not
explained is the paper, they implement an approximation of the optical depth in the original
implementation, used for the transmittance when calculating the radiance of reflected light of
the surface of the planet. Recall the equation for optical depth:

𝜏 = ∫
𝑏

𝑎
𝜌(√𝑡2 + ℎ2 + 2ℎ𝑡 cos 𝜃𝑣)𝑑𝑡 1.

Here, the distance from the surface at position 𝑡 is calculated using:

ℎ𝑡 = √𝑡2 + ℎ2 + 2ℎ𝑡 cos 𝜃𝑣 26.

By assuming that
√
1 + 𝑢 ≈ 1 + 𝑢

2
27.

This allows rewriting the optical depth integral, with 𝜌(ℎ) = exp(− ℎ
ℎ0
), and the path going

from 0 to maximum distance 𝑑, to the following:

𝜏 ≈ ∫
𝑑

0
exp(−

𝑡2
2ℎ + 𝑡 cos 𝜃𝑣

ℎ0
)𝑑𝑡 28.

The primitive of this integral is as follows:

Τ(𝑡) ≈ exp(ℎ cos2 𝜃𝑣
2ℎ0

)erfc(𝑡 + ℎ cos 𝜃𝑣
√2ℎ ⋅ ℎ0

)√𝜋
2
⋅ ℎ ⋅ ℎ0 29.

erfc(𝑥) can be approximated with

erfc(𝑥) ≈ 2
exp(−𝑥2)

2.3192𝑥 +
√
1.52𝑥2 + 4

if 𝑥 ≥ 0 30.

When 𝑥 < 0, erfc(−𝑥) = 2 − erfc(𝑥) can be used. Combining this allows the optical depth to
be evaluated from the viewer up to distance 𝑑 with the following code:

float optical_depth(float h_0, float h, float cos_theta_v, float d) {
 float a = sqrt((0.5 / h_0) * h);
 vec2 a01 = a * vec2(cos_theta_v, cos_theta_v + d / h);
 vec2 a01s = sign(a01);
 vec2 a01sq = a01 * a01;
 float x = a01s.y > a01s.x ? exp(a01sq.x) : 0.0;
 vec2 y = a01s / (2.3193 * abs(a01) + sqrt(1.52 * a01sq + 4.0))
 * vec2(1.0, exp(-d / h_0 * (d / (2.0 * r) + cos_theta_v)));
 return sqrt((6.2831 * h_0) * h) * exp((r - h) / h_0)
 * (x + dot(y, vec2(1.0, -1.0)));
}

Listing 3: (Bruneton & Neyret, 2008)‘s optical depth approximation

10

5.2. Multiple scattering
Besides single scattering, multiple scattering adds a non-negligible contribution to the total
radiance of the scattered light. On earth, this is best noticed during sunset and sunrise, as it
adds an extra blue glow to the atmosphere.

When assuming single scattering, the chosen scattering direction is trivial, as this direction
changes from the light directly towards the viewer when a photon is scattered. When
assuming two scattering events per photon path, this direction is less trivial. The second
scatter, where the photon scatters towards the viewer, now has to integrate over all scattering
directions to account for all the incoming radiance due to scattering.

When using numerical integration, this results in having to evaluate many single scattering
paths for one multiple scattering event. This becomes prohibitively expensive to compute. In
order to still render an atmosphere in real time, (Bruneton & Neyret, 2008) proposes using
several lookup tables.

In order to compute the transmittance, (Bruneton & Neyret, 2008) uses a lookup table.
Instead of storing the optical depth, and using it to calculate the transmittance, they store
the transmittance directly in the table. This allows storing the combined transmittance of all
scattering media in a single table, instead of one table for the optical depth of each media
type.

Instead of evaluating the single scattering equation directly, (Bruneton & Neyret, 2008)
recognizes it can be precomputed as well. Recall the single scattering equation:

𝐿scatter = 𝐸light𝐹(𝜃𝑠)𝛽𝑠𝜌(ℎ𝑠)𝑇𝑠𝑇𝑙 8.

Here, 𝑇𝑠 depends on the viewer height ℎ and view direction 𝜃𝑣. 𝑇𝑙 depends on the light
direction 𝜃𝑙. The height of the scattering event can be calculated from ℎ and 𝜃𝑣, as many
scattering events happen along one view ray. The last dependency is the scattering angle 𝜃𝑠.
This means single scattering only relies on 4 different variables, and can thus be
precomputed. The results are stored in a 4D lookup table.

As 4D textures are not available on the GPU, (Bruneton & Neyret, 2008) instead chooses to
use a 3D texture, and for each slice of the texture, divide it into multiple tiles to emulate a
4D texture.

Then, when 𝐿scatter is needed, it can simply be retrieved from the lookup table. Rayleigh and
Mie scattering are stored in separate tables.

The contribution of multiple scattering can be precomputed in a similar manner to how it is
done for single scattering. Instead of calculating the incoming radiance from the sun due to
transmittance, each sample point along the view path integrates the result of single scattering
over each direction. For more than two scatter events, the previous result from the multiple
scattering table is read instead.

Integrating the scattering for all directions on all sample points along the view path is
expensive. To resolve this, (Bruneton & Neyret, 2008) uses another lookup table, that
calculates the incoming radiance from multiple scattering for every scattering direction 𝜃𝑠,
viewer height ℎ and light direction 𝜃𝑙. This lookup table can then be used to evaluate the
incoming radiance due to multiple scattering at each sample point.

This process is then repeated for several steps, in order to compute scattering for more than
2 scatter events per path, referred to as scattering orders by (Bruneton & Neyret, 2008). This

11

then results in a final lookup table that incorporates both the single scattering and multiple
scattering. This table is then read to determine the radiance.

(Elek, 2009) presents a variation on the model presented by (Bruneton & Neyret, 2008).
Instead of using a table with 4 dimensions, (Elek, 2009) chooses to not incorporate the
scattering angle 𝜃𝑠, and use a 3-dimensional table instead. This means that the phase
function has to be calculated, instead of reading it from the table when computing radiance.
It also means the planet shadow cannot be stored in the table either. (Elek, 2009) argues this
effect is negligible enough for this tradeoff to work.

(Hillaire, 2020) proposes a different method of precomputing the scattering. Instead of
precomputing single scattering for all viewer positions, they use a 2D lookup table, and
recompute it when either light direction 𝜃𝑙 or viewer height ℎ changes.

For multiple scattering, (Hillaire, 2020) chooses to instead approximate the result, instead of
fully calculating each scattering order. To make the approximation work, (Hillaire, 2020)
assumes that after single scattering, the phase function becomes isotropic. This eliminates the
dependence on the scattering direction 𝜃𝑠 for multiple scattering.

Second order scattering can then be calculated by, for height ℎ, and view direction 𝜃𝑣,
calculate the incoming radiance from scattering for every direction.

Scattering orders higher than 2 can be approximated by multiplying the second order
scattering by 𝐹ms, which is a geometric series infinite sum:

𝐹ms = 1 + 𝑓ms + 𝑓2
ms + 𝑓3

ms +… = 1
1 − 𝑓ms

31.

𝑓ms represents the radiance that the sample point would receive, if the atmosphere would
emit light, with no other scattering contribution. 𝑓ms can thus be calculated by integrating
the transmittance over all directions.

5.3. Fitted models
The previously discussed methods have all tried computing the scattering equations of
Chapter 3 directly. This section introduces a different method, that attempts to find an
equation that can be fitted to the output of a path tracer, in order to then render the
atmosphere without requiring the scattering equations, or precomputed lookup tables. To
keep complexity of the fitted model low, these do assume that the viewer is either on the
ground, or close to it, and thus do not support viewing from space.

One of the earlier models to do this was presented by (Preetham et al., 1999). Their model is
based on an earlier sky luminance model by (Perez et al., 1993):

ℱ(𝜃, 𝛾) = (1 + 𝐴exp(𝐵
cos 𝜃

))(1 + 𝐶 exp(𝐷𝛾) + 𝐸 cos2 𝛾) 32.

Here, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 are coefficients that are fitted to match a reference. The presented
model does not directly give radiance for a specific wavelength, or red, green, and blue
channels. Instead, the resulting color space is CIE 𝑥𝑦𝑌 . This can then be converted to the
radiance for a specific wavelength as (Preetham et al., 1999) describes.

Radiance 𝑌 is calculated as follows:

12

𝑌 = 𝑌𝑧
ℱ(𝜃𝑣, 𝛾)
ℱ(0, 𝜃𝑙)

33.

The chromaticity values 𝑥 and 𝑦 are calculated similarly:

𝑥 = 𝑥𝑧
ℱ(𝜃𝑣, 𝛾)
ℱ(0, 𝜃𝑙)

and 𝑦 = 𝑦𝑧
ℱ(𝜃𝑣, 𝛾)
ℱ(0, 𝜃𝑙)

34.

Details for calculating 𝑌𝑧, 𝑥𝑧 and 𝑦𝑧 are further described in (Preetham et al., 1999).

The coefficients of the model given in (Preetham et al., 1999) are calculated by fitting them
to the results of a path tracer. The result is a single formula that can model the color of the
atmosphere, given ℎ = 0.

(Hosek & Wilkie, 2012) improves upon the findings of (Preetham et al., 1999), by taking the
reflection of light from the ground into account. They also improves the aureole, which is a
bright halo around the sun. This halo is also darkened when the sun is near the horizon. This
results in a new formula:

𝔽(𝜃, 𝛾) =

(1 + 𝐴exp(𝐵
0.01 + cos 𝜃

))(𝐶 +𝐷exp(𝛾𝐸) + 𝐹 cos2 𝛾 + 𝐺𝜒(𝐻, 𝛾) + 𝐼
√
cos 𝜃)

35.

Where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 , 𝐺, 𝐻, and 𝐼 are the coefficients to fit. 𝜒 is calculated as follows:

𝜒(𝑔, 𝛼) = 1 + cos2 𝛼
1 + 𝑔2 − 2𝑔 cos 𝛼

36.

The final radiance for wavelength, or color channel 𝜆 is then calculated with:

𝐿𝜆 = 𝔽(𝜃𝑣, 𝛾)𝐿𝑀𝜆 37.

All coefficients are then again fit on the result of a path tracer. Unlike the work of (Preetham
et al., 1999), the coefficients of 𝔽(𝜃, 𝛾) are interpolated from a larger set of coefficients, based
on turbidity, ground albedo, and sun elevation 𝜃𝑠.

While these models fit the general sky quite well, they are not capable of representing more
finer details. To address this, (Wilkie et al., 2021) introduces a new model based on
Canonical Polyadic Decomposition (Kolda & Bader, 2009). This method is similar to singular
value decomposition, and acts like an image compression technique. Besides outputting the
direct radiance, it also outputs the transmittance, and polarization of light. Contrary to
(Preetham et al., 1999) and (Hosek & Wilkie, 2012), this model is also able to represent the
sky when the sun is below the horizon, as well as ℎ > 0, up to a maximum height. The
downside is that this requires significantly more coefficients, with the largest version of the
model being 2.2 GB in size.

As (Bruneton & Neyret, 2008) and (Hillaire, 2020) have done with precomputing single and
multiple scattering, it is also possible to store the results of a path tracer in a lookup table
directly, instead of fitting a formula to the results. This is the method (Suzuki & Yasutomi,
2023) takes. For the lookup table, they use 64 2D lookup tables, each table representing a
single time of day, of angle 𝜃𝑙, separated in 𝜃𝑣 and 𝛾. In order to fix artifacts near the
horizon, more tables are allocated when the sun is close to the horizon. Per table, a special
spherical mapping is used that increases the number of samples near the sun.

13

6. Research goals
As seen in Chapter 5, the discussed models of atmospheric scattering can be divided in
roughly 3 categories:
• Numerical integration, where all equations are directly integrated. For real-time use, only

single scattering is considered.
• Precomputed models, where a large part of the integration is done ahead of time, allowing

for the resulting model to be used in real-time. As there is no constraint on the runtime of
the precomputation step, these models can take multiple scattering into account.

• Fitted models and approximations, where either part of the calculations or the entire
model is replaced using an approximation, or a fitted model. These models make a tradeoff
in that they cannot be used in certain circumstances, for example, (Preetham et al., 1999)
and (Hosek & Wilkie, 2012) cannot be used for viewers that are viewing the atmosphere
from either higher up, or from space.

From these categories it becomes clear that no general fitted model, that can be used for
both ground and space views, exists. This work aims to create such a model, and compare it
to the previously discussed models. While doing this, this work attempts to answer the
following questions:
• To what extent is it possible to create a fitted model for atmospheric scattering that can

support both a ground-based viewer, a viewer from higher altitudes, and space?
• How is the runtime performance of this model compared to lookup-table based models?
• How difficult is it to adapt the model to use a different 𝜌(ℎ) than the exponentially

decaying density the discussed models assume?

7. Assumptions
Before making the new model, a number of requirements have to be set for what it should be
capable of doing. The first requirement is that it has to be able to produce a sky view, as all
discussed models in Chapter 5 3 can do so. In order to render sky and space views correctly,
both transmittance from the viewer to the surface and scattering from the viewer to the
surface need to be provided, in order to attenuate light coming from surfaces inside the
atmosphere. (Bruneton & Neyret, 2008) provides a method to calculate transmittance and
scattering for a segment of the view path even if there is no way to provide this.

As (Bruneton & Neyret, 2008) and (Elek, 2009) calculate multiple scattering as adding on
top of single scattering, it may be possible to calculate single scattering and multiple
scattering separately.

7.1. Model parts
This means that the model needs to provide at least the following:
• Transmittance from viewer to infinity
• Scattering from viewer to infinity.
• Either combined scattering or separate multiple scattering.

Note that this does not include optical depth. As transmittance is derived from the optical
depth, the optical depth approximations provided by (Yue, 2024), (Vasylyev, 2021), (Kocifaj,
1996) and (Schuler, 2012) can still be used here.

As shown in (Bruneton & Neyret, 2008), transmittance and scattering from the viewer to
infinity is enough to reconstruct both transmittance and scattering along a segment in the
atmosphere. For this reason, it does not have to be modeled directly.

14

7.2. Coordinate space
The coordinate space used in chapter 5 uses viewer height ℎ, and viewer direction 𝜃𝑣 to
calculate the height along distance 𝑡 of the view path. This is illustrated below:

𝑟

ℎ

𝜃𝑣
𝑣

𝑡

Figure 4: Viewer 𝑣 in an atmosphere.

The height above the planet surface, along the ray at position 𝑡, ℎ(𝑡), can then be calculated
as follows:

ℎ(𝑡) = √𝑡2 + (ℎ + 𝑟)2 + 2𝑡(ℎ + 𝑟) cos 𝜃𝑣 − 𝑟 38.

For the light direction, 𝜃𝑙 can be used, as described in Section 5. Only the view and light
angles 𝜃𝑣 and 𝜃𝑙 do not cover all possible angles that can be used in the phase function. For
this reason, 𝛾 is used. This is the same as described earlier in figure 2:

𝑟

ℎ

𝜃𝑣𝜃𝑙

𝛾𝑙

𝑣

𝑝𝑙 𝑝𝑣

Figure 2: Viewer 𝑣 in an atmosphere.

8. Ground truth
The ground truth rendering is provided by a volumetric path tracer, implemented as
described in (Pharr et al., 2016) and (Fong et al., 2017). To match the other models
described in chapter 5, the path tracer uses the same atmospheric density as described in
(Bruneton & Neyret, 2008). This means Rayleigh and Mie scattering are represented using
exponentially decaying densities, depending on altitude, and Ozone density is represented
with a tent function.

15

As correct spectral rendering is not a focus, the path tracer outputs colors in linear sRGB
color space.

9. Automatic model finding
As manually finding a formula that fits either the transmittance or scattering equations may
be very time consuming, as well as complex in case of the scattering equations, it is preferred
to find an automated solution for this. For this, it is useful to have some reference data to
work with.

9.1. Reference data
As a ground truth path tracer is available, it is possible to utilize it to obtain the correct
value for transmittance for each (ℎ, 𝜃𝑣) pair, as well as the scattering radiance for each
(ℎ, 𝜃𝑣, 𝜃𝑙, 𝛾) pair.

The transmittance data is rendered out to a 2D texture. The x axis represents the height ℎ,
and the y axis is the view angle cos 𝜃𝑣. The result is shown below in Figure 5.

For scattering, there are 4 relevant parameters, which are rendered out to a tiled 2D texture.
Here, inside each tile, the x, and y coordinates represent the squared height ℎ2, and view
angle cos 𝜃𝑣. The tile x and y coordinates represent the light angle cos 𝜃𝑙, and the phase
function angle cos 𝛾.

For scattering, a 4D texture is used, but it is rendered as a 2D texture, divided in tiles. Inside
each tile, the x axis represents the squared view height ℎ2. The square gives more samples to
the lower altitudes, improving results. The y axis then represents the view angle 𝜃𝑣.

Figure 5: Transmittance data, as image. x
axis is the viewer height from the surface, y

axis is the viewing angle cos 𝜃𝑣

Figure 6: Scattering data, as image.
• x axis is the light angle cos 𝜃𝑙,
• y axis is the angle between the light and

view rays, cos 𝛾.
• Inside each tile, the x axis is the squared

viewer height from the surface,
• The y axis is the viewing angle cos 𝜃𝑣

16

As there is no scattering when the sun is obscured by the planet, the light angle 𝜃𝑙 is limited
to be between 0° and 100°. As the phase function angle 𝛾 is clamped to come from the given
combination of 𝜃𝑣 and 𝜃𝑙.

For both the transmittance, and scattering, the tables parameterized according to (Bruneton
& Neyret, 2008) were also generated, but these didn’t give significantly better or worse
results when trying to fit functions to these tables.

9.2. Observations
When looking at the transmittance data, it becomes clear the transmittance per color
channel follows a curve similar to the one defined by the formula exp(− exp(−𝑓(ℎ, 𝜃𝑣))),
where 𝑓(𝑥) is some unknown function based on the viewer height ℎ and angle 𝜃𝑣. When
attempting to fit manually,

𝑓(ℎ, 𝜃𝑣) = ℎ2[−1 + cos 𝜃𝑣] 39.

appears to be a good approximation, but only for low values of ℎ. As exp(− exp(−𝑥)) has the
general shape of the sigmoid function:

1
1 + exp(−𝑥)

40.

9.3. symbolic regression
One method of automatically finding a function that fits given data is symbolic regression.
PySR (Cranmer, 2023) is a python library that can perform symbolic regression, and claims to
better than some other methods and libraries available at finding functions. It however was
not capable of finding a suitable function that fit the transmittance data. Even on simplified
data, with only one exponentially decaying media, and no ozone layer, it was only able to
find the

exp(− exp(−𝑓(ℎ, 𝜃𝑣))) 41.

formula, however, the found formulas for this did not function beyond specific ranges.

As symbolic regression worked badly for transmittance, it was not attempted for scattering,
as the scattering data is more complex.

9.4. Kolmogorov-Arnold networks
Another method that can potentially produce a function that fits the given data are
Kolmogorov-Arnold networks (Liu et al., 2025). Due to limitations in how Kolmogorov-
Arnold networks function, they have difficulty representing the steep cutoff needed for the
transmittance data. For this reason, they did not fit the data well, and thus weren’t tried for
scattering.

9.5. Polynomial fit
As a polynomial has trouble representing the steep cutoff, it has to be used in conjunction
with another method that can. For this reason, the result of the polynomial is put into the
sigmoid function. A separate polynomial is used for the height ℎ and 𝜃𝑣, which are then
added together. From experiments it becomes clear that the height does not need more than
one degree for the approximation to work. For 𝜃𝑣, only a second degree polynomial is needed.
This results in the following formula:

17

1
1 + exp(−𝑎1 − 𝑎2ℎ − 𝑎3 cos 𝜃𝑣 − 𝑎4 cos2 𝜃𝑣)

42.

Where 𝑎𝑛 are the parameters used. This is then done once for Mie, and once for Rayleigh.

9.6. Neural networks
The last automatic method tried are neural networks, specifically multilayer perceptrons,
using the python library pytorch (Ansel et al., 2024). For activation functions, both the
sigmoid and the rectified linear unit were tried. For training, the Adam optimizer (Kingma &
Ba, 2017) was used, as other optimizers did not converge. A learning rate of 0.01 was used.

9.6.1. Transmittance
For the transmittance data, a neural network with a single hidden layer of size 4, with the
sigmoid activation function was trained. More layers, or layers with more neurons did not
significantly improve results. The neural network converged for both the direct transmittance
table and the parameterization described in (Bruneton & Neyret, 2008).

9.6.2. Scattering
For scattering, a neural network with two hidden layers, of size 8 was trained. For the
activation function of the final layer, exp(−𝑥) is used. Reducing the amount of hidden layers
or using smaller hidden layers made the resulting approximation of the scattering data visibly
worse. Adding more layers or increasing the layer size did not improve results much.

9.6.3. Implementation as atmosphere
As the GLSL shading language supports up to 4x4 matrices, implementing the neural network
for transmittance is trivial, as the weights for the network can be directly represented using
the mat2x4, mat4x4 and mat4x3 types. The biases can be represented using the vec4 and vec3
types. This allows the neural network to be directly implemented into GLSL.

As the scattering neural network uses a hidden layer size of 8, it is no longer possible to
represent directly in the types available in GLSL. Instead, the matrices used for the weights in
the hidden layers have to be split up. The hidden layer states also have to be split up into
two vec4′s.

As the neural network is only trained for viewer positions inside the atmosphere, any viewer
that is outside the atmosphere is moved to the top atmosphere boundary.

In order to calculate the transmittance for a given segment, the same method as described in
(Bruneton & Neyret, 2008) is used. The neural network is trained on the transmittance of the
full ray, and if the ray intersects the surface, the transmittance at this intersection is
calculated using the neural network. The full transmittance is then calculated as follows:

𝑇 = 𝑇viewer
𝑇intersect

43.

where 𝑇viewer is the transmittance from the viewer, and 𝑇intersect is the transmittance, in the
view direction, at the point the view ray intersects the planet.

As the neural network is not accurate enough when the view ray is looking towards the
planet surface, the rays are instead reversed, and the intersection position is used as the full
ray transmittance. The viewer position is then used as the intersect position.

18

Scattering is again done using the method described in (Bruneton & Neyret, 2008). The
neural network is used to calculate scattering for the full ray. If it hits the planet surface, the
scattering from that position onward is then removed from the final result, as follows:

𝑆 = 𝑆viewer − 𝑆intersect(
𝑇intersect
𝑇viewer

) 44.

Note that the transmittance of the viewer and intersect point look in the opposite direction
as the view ray, as this improves accuracy, as explained earlier.

10. Manual modeling
Besides of using automatic methods to find an approximation to the scattering equations, a
manual approach may also provide a useful approximation.

10.1. Flat homogeneous atmosphere
The simplest possible model for scattering is a flat homogeneous atmosphere, with the viewer
𝑣 being at a distance of ℎ𝑣 below the top of the atmosphere boundary. Assuming only one
scattering medium type, as well as both the viewer and light source 𝑙 above the horizon,
meaning 0° ≤ 𝜃𝑣 ≤ 90° and 0° ≤ 𝜃𝑙 ≤ 90°. This looks as follows:

𝑙

ℎ𝑣

𝜃𝑣𝜃𝑙
𝑣

Figure 7: Viewer 𝑣 in a flat atmosphere.

To then calculate single scattering, the following integral has to be solved, where 𝛽𝑎 is the
absorption coefficient of the atmosphere, and 𝛽𝑠 the scattering coefficient.

𝐿scatter = ∫
ℎ𝑣

0
𝛽𝑠 exp(−𝑡 𝛽𝑎

cos 𝜃𝑣
)exp(−(ℎ𝑣 − 𝑡) 𝛽𝑎

cos 𝜃𝑙
)d𝑡 45.

To make integration easier, this can then be rewritten as follows:

𝐿scatter = 𝛽𝑠ℎ𝑣 ∫
1

0
exp(−𝑡 𝛽𝑎

cos 𝜃𝑣
− (1 − 𝑡) 𝛽𝑎

cos 𝜃𝑙
)d𝑡 46.

As this can be integrated exactly, this then becomes:

𝐿scatter = 𝛽𝑠ℎ𝑣

exp(− 𝛽𝑎
cos 𝜃𝑣

) − exp(− 𝛽𝑎
cos 𝜃𝑙

)
𝛽𝑎

cos 𝜃𝑙
− 𝛽𝑎

cos 𝜃𝑣

d𝑡 47.

The shader presented in (Jodie, 2019) utilizes this to then approximate the single scattering
equations in a spherical atmosphere.

19

10.2. Spherical atmosphere
When the planet radius is large enough, with a small enough radius for the atmosphere, using
a flat atmosphere can serve as a good enough approximation. (Jodie, 2019) does this, and
replaces 𝛽𝑎

cos 𝜃𝑣
 and 𝛽𝑎

cos 𝜃𝑙
 with the optical depth of a homogeneous sphere. Under the

assumption that the sphere extends up to the scale height of an exponentially decaying
atmosphere, with the viewer standing on the planet, at distance 𝑟 away from the planet
center. As the atmosphere remains homogeneous, the optical depth is the distance from the
viewer to the edge of the atmosphere. The optical depth can thus be expressed as a line
starting from distance 𝑟 from the origin, intersecting a circle of radius 𝑟 + ℎ0:

𝜏sphere = 𝛽𝑎√(𝑟 + ℎ0)
2 − 𝑟2 + 𝑟2 cos2 𝜃𝑣 − 𝛽𝑎𝑟 cos 𝜃𝑣 48.

When the difference between 𝑟 + ℎ0 and 𝑟 is set equal to one, this can then be rewritten to
the DR-1 (shown below) form described in equation 9 in (Rapp-Arrarás & Domingo-Santos,
2011):

𝑓(𝜃𝑣, 𝑎) = √1 + 2𝑎 + 𝑎2 cos2 𝜃𝑣 − 𝑎 cos 𝜃𝑣 49.

Where 𝑎 is the radius of the sphere, relative to the scale height ℎ0.

When plotted against the optical depth integral, with 𝜌(ℎ) = exp(− ℎ
ℎ0
), it shows this

approximation is reasonable for any view angle above the horizon. Shown below is the
approximation compared to the reference integral, as well as the approximation described in
(Schuler, 2012), for a planet with a radius of 600, and a scale height of 1. 𝜏 is the optical
depth, and 𝜃 is the angle of the view ray with the surface normal of the planet.

Integral
Approximation
Schuler

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
cos 𝜃

0

5

10

15

20

25

30

35

𝜏

Figure 8: Scaled optical depth

Note that this approximation only works when the viewer is looking up, with 0° ≤ 𝜃𝑣 ≤ 90°.

(Rapp-Arrarás & Domingo-Santos, 2011) show that this approximation can also be applied to
other optical depth profiles besides the exponential one.

From here, (Jodie, 2019) uses this to calculate the total amount of single scattering for a
path in the atmosphere. With the following optical depths:

20

𝜏 = 𝛽𝑎√(𝑟 + ℎ0)
2 − 𝑟2 + 𝑟2 cos2 𝜃 − 𝛽𝑎𝑟 cos 𝜃 50.

Where 𝜃 is 𝜃𝑣 for a view ray, and 𝜃𝑙 for a light ray. As this approximates the normalized
optical depth for a given altitude, calculating the optical depth at a different altitude ℎ
means simply multiplying the optical depth by the medium density at the viewer altitude:

𝜏 = 𝛽𝑎 exp(−
ℎ
ℎ0

)(√(𝑟 + ℎ + ℎ0)
2 − (𝑟 + ℎ)2 + (𝑟 + ℎ)2 cos2 𝜃 − (𝑟 + ℎ) cos 𝜃) 51.

The total single scattering can now be calculated as follows, using the scattering integral for
flat homogeneous atmospheres:

𝐿scatter = 𝜏view𝛽𝑠𝐹(𝜃𝑠)(
exp(𝛽𝑎𝜏view) − exp(𝛽𝑎𝜏light)

𝛽𝑎𝜏light − 𝛽𝑎𝜏view
) 52.

This provides a reasonably accurate approximation when the view ray is looking up.

10.3. Looking down
The optical depth approximation however does not work well when looking down, below the
horizon. The initial approximation provided by (Schuler, 2012) has the same issue. Consider a
viewer in the atmosphere looking in a direction where 𝜃𝑣 = 90°:

𝑟

ℎ

90°
𝑣

𝑝𝑣

Figure 9: Viewer 𝑣 in an atmosphere, looking at the horizon

The optical depth of this view path 𝑝𝑣 is equal to half the optical depth of a viewer at an
infinite distance away from the atmosphere, looking through it. This total optical depth can
then be calculated as 2𝜏 , as seen in the view ray 𝑝𝑡:

21

𝑟

ℎ

90°90° 𝑝𝑡

Figure 10: View ray for a viewer at an infinite distance away from the atmosphere

Now consider the viewer looking down at the atmosphere. In that case, the optical depth
becomes the optical depth for the full view ray, from the closest point to the planet 𝑐,
without the optical depth of the part of the ray 𝑝ℎ behind the viewer, as seen below:

𝑟

ℎ

90°90°45°

𝑣 𝑐

𝑝𝑣

𝑝ℎ

Figure 11: Viewer 𝑣 looking down

When written as an equation for the optical depth, this becomes:

𝜏 = 2√(𝑟 + ℎ0)
2 − 𝑟2 −√(𝑟 + ℎ0)

2 − 𝑟2 + 𝑟2 cos2 𝜃 − 𝑟 cos 𝜃 53.

Where 𝜃 is 𝜃𝑣 for a view ray, and 𝜃𝑙 for a light ray. Note that this equation does not take the
density at the viewer 𝑣 or midpoint 𝑐’s altitude into account.

While this works for the optical depth used for transmittance, simply using the scattering
integral Equation 52 when looking down no longer works, even when using the adjusted
optical depth.

It is possible to split the scattering integral into two parts: one from the view ray’s closest
point to the planet center, which can be calculated as normal, and one from the viewer up to
the closest point. This however gives the same result visually as not splitting up the integral.
This means another method of calculating the scattering with a viewer from outside the
atmosphere is needed.

22

10.4. Views from space
Besides functioning as an approximation to single scattering, the integral for the flat
homogeneous atmosphere introduced in Equation 45 can be interpreted differently.
Simplifying the integral, it becomes:

𝐿segment = 𝜏segment ∫
1

0
exp(−𝑡𝜏𝑎 − (1 − 𝑡)𝜏𝑏) 54.

Here, 𝜏segment can be interpreted as the optical depth over a segment in the atmosphere, 𝜏𝑎
the optical depth to the light at the start of the segment, and 𝜏𝑏 the optical depth at the end
of the segment.

The radiance that then reaches the viewer is 𝐿segment multiplied by the transmittance from
the viewer to the start of the segment. However, this can be directly incorporated into the
integral, by adding the optical depth from the viewer to the start of the segment to both 𝜏𝑎
and 𝜏𝑏. The radiance at the viewer from this segment is then:

𝐿viewer = 𝜏segment𝐹(𝜃𝑠)
exp(−𝜏𝑎 − 𝜏view) − exp(−𝜏𝑏 − 𝜏view)

𝜏𝑏 − 𝜏𝑎
55.

When this segment is used to represent the ray from the viewer towards the surface of the
planet, it can directly approximate the scattering on that segment. This however does not
work well from all viewer positions, especially when the viewer is far above the planet
surface, or is near sunrise.

To resolve this, it is instead possible to use the segment scattering to calculate the scattering
for a part of the view ray, and add them together. This new integration method resembles the
one introduced in (Hillaire, 2015), which is as follows:

∫
𝑑

0
exp(−𝛽𝑎𝑡)𝑆 d𝑡 56.

Where 𝑑 is the ray length, and 𝑆 is the scattered light at this sample position. This can be
simplified to:

𝑆 − 𝑆 exp(−𝛽𝑎𝑑)
𝛽𝑎

57.

10.5. Ozone layer
For ozone, (Bruneton, 2017a) and (Hillaire, 2020) use the following density:

𝜌(ℎ) = max(0, 1 − |ℎ − 25|
15

) 58.

Where ℎ is in kilometers. While an analytical integral is likely possible, a simple
approximation for the ozone layer can be set up as a constant density shell, starting at 17.5
kilometers from the planet surface, and ending at 32.5 kilometers from the surface.

This is then expressed as follows:

𝜌(ℎ) =
{{
{
{{1 if 17.5 ≤ ℎ ≤ 32.5

0 otherwise
59.

23

The optical depth can then be calculated as the path length inside this shell, which is the
difference between the positions along the ray of the spheres representing the bottom and top
boundary of the shell.

10.6. Multiple scattering
Due to time constraints, multiple scattering is not considered. It may be possible to
approximate it in a similar way as (Monzon et al., 2024) describes, as this provides an
analytical solution assuming a constant density medium. This however does rely on an extra
coefficient, 𝐾𝑑, which is a measured value, and would have to be calculated as well.

Another method of implementing multiple scattering is done in (Schuler, 2018). This depends
on the delta-Eddington approximation, but not many details are given in the original code.

11. Evaluation
In order to see if the new models hold up to the existing ones presented in chapter 5, they
have to be compared to these models. This is done by looking at the visual accuracy of the
models to a path traced ground truth, as well as looking at their runtime performance and
implementation complexity.

11.1. setup
As the intention is to run the atmosphere models on the GPU, the evaluation has to take this
into account.

For this purpose, a simple tool to run shaders is developed. This shader runner uses the rust
library wgpu for its GPU functionality. wgpu can use multiple graphics API’s such as Vulkan,
and DirectX.

It can render a provided shader, in SPIR-V format, or WGSL, to either an output texture, a
buffer texture that can later be read by other shaders, or a volume texture that can be read
by other shaders. It can then outputs the output textures to a specified image format. To
preserve accuracy, the buffer textures are in 32-bit floating point RGBA format, (Rgba32Float
in wgpu) and may be a 2D or 3D texture.

The tool can output images to the png file format, as well as the exr image format, and
numpy’s npy file format (Harris et al., 2020). The npy format is used as one of the image
comparison tools fails to load the resulting exr images.

In order to measure the runtime of shaders, the shader runner can optionally output timings
recorded using wgpu’s timestamp queries. These report the time difference from before and
after issuing the draw call that renders the shader in the render pipeline.

When compiled, the tool includes the shaders to compare directly into the executable, so
when the executable is run without any command-line arguments, it runs all the included
shaders and copies the performance statistics to the clipboard. This allows for easier
performance measurements on multiple computers. The link to the repository containing all
relevant code can be found in appendix E.

11.2. Implemented models
In order to provide a good set of models to compare to, several of the models mentioned in
Chapter 5 are implemented to compare against.

24

The parameters for the atmosphere were provided by the demo code from (Hillaire, 2020),
and, when possible, the models have been set up so that they can use the parameters as
provided there. As these parameters provide a planet radius, a planet reflecting no light is
rendered as part of the atmosphere.

To keep the comparison simple, no spectral rendering is done, and it is assumed the
parameters provided are valid for a linear sRGB color space. If needed, the models could be
modified to provide spectral output, as described in (Bruneton, 2017b), as well as (Bruneton,
2017a).

Some of the models have been ported to work in shadertoy as well. Links to the shadertoy
shaders can be found in appendix F.

11.2.1. Empty shader
This shader only outputs a white image, and does no other calculations. It is used to measure
any overhead in running the shader, besides the calculations that the shader has to perform.

11.2.2. Path traced reference
To provide a ground truth to compare against, a path tracer is implemented, according to
(Pharr et al., 2016) and (Fong et al., 2017). It implements exponentially decaying density for
Mie and Rayleigh scattering, and a tent distribution for ozone absorption. For each color
channel, 4096 samples are taken and averaged per pixel. 4 scattering events are considered
per pixel, and no denoising is applied.

11.2.3. Bruneton and Neyret
The implementation of the model presented in (Bruneton & Neyret, 2008) is the one provided
in (Bruneton, 2017a), translated to work in the shader runner. It calculates 4 scattering
orders. While the provided implementation allows calculating spectral radiance as well, this is
not used, as the parameters provided are for linear sRGB instead.

11.2.4. Hillaire
This is an implementation of the model presented in (Hillaire, 2020), ported from the code
supplied with the paper. It does not implement any of the frustum grid to compute
scattering, and instead falls back to raymarching when the camera is outside of the
atmosphere.

11.2.5. Preetham, Shirley and Smits
This is an implementation of the model presented in (Preetham et al., 1999). As this is a
model already fitted to another atmosphere, it does not use any of the parameters provided,
and thus matches the resulting atmospheres less well. It is also only capable of ground views,
and thus cannot be used for comparisons to higher altitude and space views.

11.2.6. Naive
The naive atmosphere is an implementation of the atmospheric scattering equations by direct
numerical integration. It is a modified version of (Terrell, 2016), adding ozone absorption in
order to match the other implementations.

11.2.7. Schuler
This model is a derivation of the naive model, replacing the inner loop that integrates the
optical depth from the sample point towards the light, with the Chapman function
approximation as described in (Schuler, 2012). As the approximation only works for an

25

exponentially decaying atmosphere, this version of the model does not incorporate ozone
absorption. Note that while an implementation was provided as supplementary material to
(Schuler, 2012), this version could not be adapted to work with the given parameters.

11.2.8. Neural network
This is an implementation of atmospheric scattering as described earlier in chapter 9.6. The
parameters used are a result of one of several training runs, as some training runs resulted in
a less accurate fit.

11.2.9. Flat
This is an implementation of the spherical, homogeneous atmosphere as described earlier in
chapter 10.1, as well as (Jodie, 2019). When looking down, and the view ray hits the planet,
the scattering is assumed to take place in a segment, as described in chapter 10.4.

Note that the ozone layer is modeled as a constant density shell in this model, instead of
using the tent function the other models use. This results in a slight mismatch in some view
angles.

11.2.10. Raymarched
This is an implementation using the scattering integral as described in chapter 10.4, as a
replacement for the naive integrator used in (Terrell, 2016). For the optical depth,
approximation from chapter 10.1 is used. The number of integration steps is set to 5, as this
provides a good tradeoff between quality and steps required.

At with the flat model, tho ozone layer for this model is also modeled as a constant density
shell, and may thus also appear different.

11.3. Transmittance
Besides comparing the scattering results of the models, they can also be used to calculate
transmittance. As most models implemented use similar methods to calculate transmittance,
only the new neural network, and flat atmosphere models are considered.

11.3.1. Reference
This implements a naive Riemann integrator to calculate the optical depth. The number of
steps is intentionally set high, to 128 steps, to improve accuracy.

11.3.2. Neural network
This uses the transmittance neural network as described in chapter 9.6, instead of the
scattering neural network. When the view ray hits the planet, the transmittance is calculated
for the segment in a similar manner as (Bruneton & Neyret, 2008), as the neural network
only provides the transmittance for a full view ray.

11.3.3. Flat
This calculates the optical depth as described in chapter 10.1, with equation 50:

𝜏 = 𝛽𝑎√(𝑟 + ℎ0)
2 − 𝑟2 + 𝑟2 cos2 𝜃 − 𝛽𝑎𝑟 cos 𝜃 50.

The optical depth for the ozone layer is calculated as described in chapter 10.5.

If the view ray hits the planet surface, the optical depth for the segment between the viewer
and planet surface is computed in a similar manner as the optical depth when looking down.

26

However, the point on the planet surface is used as midpoint, instead of the point closest to
the planet center.

The optical depth is then used with Beer’s law to calculate the transmittance:

𝑇 = exp(−𝜏) 60.

11.4. viewer, light, and exposure
When comparing, all models are rendered from different viewer perspectives. The following
viewer positions are used:
• ground, directly on the planet surface.
• plane, at 5 kilometers above the planet surface.
• orbit, at 100 kilometers above the planet surface, then moved 1000 kilometers backwards,

to give a better overview.
• space, showing the planet and atmosphere in full. The sun is positioned to the top right of

the viewer, showing both the illuminated and dark side of the planet and atmosphere.

For the ground, plane and orbit views, the following times of day are used for the viewer:
• Dawn, with the sun towards the viewer, at 6° below the horizon
• Sunrise, with the sun towards the viewer, at 6° above the horizon
• Noon, with the sun directly above the viewer.

A notable feature of the atmosphere is the planet shadow, where the planet itself casts a
shadow into the atmosphere. To view this, two extra viewing positions are rendered as well,
looking with the sun to the right side of the viewer, 3° below the horizon. One viewer is
positioned on the planet surface, and one is positioned 200 kilometers above the surface.

The sun, as light source, uses an irradiance of 6, for the r, g and b color channels. No
physical unit is used here.

For all view positions, a different camera exposure is used to map the radiance to a final per-
pixel color value that allows viewing the image without adjusting the brightness later on.
Exposure is implemented as simply multiplying the radiance by the exposure value. For most
view and light combinations, this value is 1. When the time of day is set to “dawn”, an
exposure of 16 is used. For the “space” viewpoint, an exposure of 2 is used. For the planet
shadow views, an exposure of 32 is used.

11.5. Visual comparison
For all viewers and light combinations, each model is then rendered to an 1080 by 1920
images, and stored to disk as a png file, with 𝑡(𝑥) = 1.0 − exp(−𝑥) applied per color channel
as tonemap operator, and converted from linear sRGB to nonlinear sRGB. Besides this, the
image is also stored as an exr image, as well as numpy’s npy file format, storing the color
channels directly as 32 bit floating point numbers, in sRGB linear, without any other
processing applied.

For comparing the results of the scattering models, the path tracing model is used as
reference. All other models are then compared to the path tracer, for each viewer and light
combination.

Comparison is done using FLIP, in high dynamic range (Andersson et al., 2021). As FLIP is
unable to load the exr images produced by the shader tool, they are loaded in the npy file
format. FLIP in high dynamic range also silently fails, and returns a mean error, as well as
error map consisting of only the value 0 if there is any black pixel in the input image. For

27

this reason, a value of 1 ⋅ 10−9 is added to the color channels of every pixel. The mean error
that FLIP reports is then written out to a CSV file, and the error map is written out to
another image.

The second error metric that is used is the Root-Mean Square Error, or RMSE for short:

RMSE =
√
√√
√

∑
𝑁

𝑖=0

(𝑣𝑖,𝑚 − 𝑣𝑖,𝑡)
2

𝑁
61.

Where 𝑣𝑖,𝑚 is the 𝑖th sample of the model to test, and 𝑣𝑖,𝑡 is the 𝑖th sample of the reference
model.

This is applied separately for each color channel, for each pixel in the image. This is then
converted into an image, and stored. The mean error for each image is also stored.

This process is repeated for the transmittance models, where the reference transmittance
model is compared against the other transmittance models. However, as the transmittance
values range between 0 and 1, FLIP is used with low dynamic range instead (Andersson et
al., 2020). Note that using FLIP here is not entirely correct, as the transmittance values are
never displayed directly. FLIP however does provide a good error map to see where the
transmittance differs.

11.6. Performance comparison
To measure runtime performance, wgpu’s timestamp queries are used. These record the time
at the point they are inserted into the render pipeline. In the shader runner, one is inserted
before the draw call to render the shader, and one after this draw call. The difference
between the two timestamps then corresponds to the time it took the shader to run. To
attempt to make the results more consistent, the shader is run 512 times. The last 256 times,
the timestamps are recorded for profiling. The average time of these 255 runs is then used as
time the model runs in.

For the models presented in (Bruneton & Neyret, 2008) and (Hillaire, 2020), the time needed
for precomputation is recorded separately. However, for (Hillaire, 2020), the scattering table
is assumed to be part of the final render, as this table needs to be recomputed every time the
viewer height, or the angle with the sun changes.

Hillaire’s model is not able to use the lookup table when the viewer is outside the
atmosphere. This causes it to have different performance characteristics in this case.

11.7. Implementation complexity
The last method to compare models with is by implementation complexity. This is a
subjective measure of how complex the method is to implement both as a shader, as well as
any support code needed for precomputation. As a general rule applied here, more lines of
code indicate a more complex implementation. In this case, the significant lines of code are
counted. These are any line of code that satisfies the following:
• is not empty.
• is not a comment.
• is not punctuation, such as } and);, which are common at the end of function calls and

function definitions.
• contributes to the final output, and is not setup code, such as uniforms.

28

Requiring some kind of precomputation also increases complexity, as it requires setting up
extra code to render to textures, and then use these textures from the shader. The difficulty
of this depends on the renderer that the final model is implemented in.

While the neural network based model does not do any precomputation in the same way as
the models presented in (Bruneton & Neyret, 2008) and (Hillaire, 2020), it does require
training a neural network, which adds to the complexity needed to make the final model.

12. Results
Here, the models are compared as described in the previous chapter.

12.1. Visual
Here, the models are compared visually. For a full table of how each model compares to the
path traced reference, according to the FLIP and RMSE metrics, see Appendix A and
Appendix B. Due to space constraints, not all models are compared to the path tracer for
each view. Instead, the models are only compared where the results differ more from the path
tracer, as well as when there is a failure mode of the model that can be highlighted.

12.1.1. Bruneton and Neyret, Hillaire
As both Bruneton and Neyret’s and Hillaire’s model implement multiple scattering, they
come very close to the reference path tracer.

Hillaire’s model gives a slightly different halo around the sun, caused by Mie scattering. This
is likely due to the multiple scattering approximation assuming the phase function is
isotropic. This is most noticeable from the ground sunrise view:

Bruneton and Neyret Reference Hillaire

FLIP errors:

← 0.033088 0.120719 →

Comparison 12: Ground

This is less evident from a higher altitude:

29

Bruneton and Neyret Reference Hillaire

FLIP errors:

← 0.053434 0.133991 →

Comparison 13: Elevated viewer at 5km height from the surface

However, Bruneton and Neyret’s model does not handle the planet shadow viewed from orbit
very well, as there is a blocky pattern near the terminator. Hillaire’s model does not have this
issue:

Bruneton and Neyret Reference Hillaire

FLIP errors:

← 0.146206 0.129976 →

Comparison 14: From orbit

12.1.2. Naive and Schuler
The Naive model and Schuler’s model do not implement multiple scattering, and will thus
look different from the path traced reference. On top of this, Schuler’s model does not
implement ozone absorption, and thus has different colors as well.

The lack of multiple scattering is evident as an overall darkened atmosphere:

30

Naive Reference Schuler

FLIP errors:

← 0.207841 0.205886 →

Comparison 15: Ground

The lack of ozone in Schuler’s model becomes more apparent during sunrise, resulting in the
sky appearing less red:

Naive Reference Schuler

FLIP errors:

← 0.193594 0.163216 →

Comparison 16: Ground

The lack of ozone is visible even more when looking from space:

Naive Reference Schuler

FLIP errors:

← 0.141132 0.263759 →

Comparison 17: Ground

31

The lack of multiple scattering becomes most evident when viewing the planet shadow from
the ground, as it illuminates the shadowed part of the atmosphere more, as seen on the left in
the images below:

Naive Reference Schuler

FLIP errors:

← 0.264257 0.412816 →

Comparison 18: Planet shadow, viewed from the ground

12.1.3. Raymarched and Flat
The raymarched and flat models only implement single scattering. As the flat model assumes
it starts inside the atmosphere, it does not work well when the viewer is outside the
atmosphere.

Inside the atmosphere, they are very similar however:

Raymarched Reference Flat

FLIP errors:

← 0.164581 0.163711 →

Comparison 19: Sunrise from the ground

32

Raymarched Reference Flat

FLIP errors:

← 0.14701 0.150263 →

Comparison 20: Noon from the ground

The flat model still remains mostly similar at an elevated viewing position:

Raymarched Reference Flat

FLIP errors:

← 0.320334 0.309297 →

Comparison 21: Sunrise from 5km above the surface

Raymarched Reference Flat

FLIP errors:

← 0.264165 0.270817 →

Comparison 22: Noon from 5km above the surface

The flat model however breaks down from space views. Notice that the raymarched model
also has difficulty representing the transition into the shaded area of the planet from this
view, with the step count of 5 used:

33

Raymarched Reference Flat

FLIP errors:

← 0.093727 0.226421 →

Comparison 23: Far view from space

When used from a viewer with lower elevation, the flat model still fails when viewed from
outside the atmosphere, and loses part of the color caused by ozone absorption:

Raymarched Reference Flat

FLIP errors:

← 0.150762 0.2942 →

Comparison 24: Sunrise from space

With the low step count used, the raymarched model also does not represent the planet
shadow well. Note that the flat model fails completely here, as it does not take the planet
shadow into account at all:

Raymarched Reference Flat

FLIP errors:

← 0.167434 0.338764 →

Comparison 25: Planet shadow, viewed from 200km above the surface

34

12.1.4. Raymarched and Naive
However, due to the improved integrator, the raymarched model does improve over the naive
model in some cases, such as when viewing the sunrise. Note how the horizon is not darkened
in the raymarched model, and more closely matched the reference:

Raymarched Reference Naive

FLIP errors:

← 0.320334 0.337864 →

Comparison 26: Sunrise viewed 5km from the surface

The naive model has a noticeable darkening around the horizon, that both the reference path
tracer, and the raymarched model do not have. While this can be resolved by increasing the
number of integration steps in the naive model, the improved integrator of the raymarched
model does not require this.

12.1.5. Flat and Preetham, Shirley and Smits
As Preetham, Shirley and Smits’ model is not fitted on the reference path tracer, it will look
different. However, it does provide a good baseline for a fitted model that works only close to
the ground. It still mostly gives the same image for a ground-bound viewer:

flat Reference Preetham, Shirley and Smits

FLIP errors:

← 0.163711 0.245154 →

Comparison 27: Sunrise from the ground

35

flat Reference Preetham, Shirley and Smits

FLIP errors:

← 0.150263 0.222099 →

Comparison 28: Noon from the ground

However, as it’s not made to work after sunset, it fails here. The flat model also fails in this
case, as it does not properly take the planet shadow into account:

flat Reference Preetham, Shirley and Smits

FLIP errors:

← 0.477115 0.495644 →

Comparison 29: Sun below the horizon, from the ground

Both also fail to represent the planet shadow:

Flat Reference Preetham, Shirley and Smits

FLIP errors:

← 0.420228 0.481143 →

Comparison 30: Planet shadow viewed from the ground

36

12.1.6. Neural network
The new fitted model based on neural networks largely reproduces the right colors of the
reference path tracer, but does not correctly reconstruct details, such as the Mie scattering
halo:

Neural network Reference Hillaire

FLIP errors:

← 0.296081 0.120719 →

Comparison 31: Sunrise from the ground

Or the planet shadow:

Neural network Reference Hillaire

FLIP errors:

← 0.202704 0.066203 →

Comparison 32: Planet shadow from the ground

This is less noticeable during daytime:

37

Neural network Reference Hillaire

FLIP errors:

← 0.0738 0.077964 →

Comparison 33: Noon from the ground

Due to the model not being able to reconstruct finer details, the neural network model does
not represent dawn very well:

Neural network Reference Hillaire

FLIP errors:

← 0.725139 0.304201 →

Comparison 34: Sun below the horizon, 5km above the surface

From an elevated viewing position, it also does not represent the light scattered between the
planet surface and the viewer well, and makes it too dark:

Neural network Reference Hillaire

FLIP errors:

← 0.35251 0.107592 →

Comparison 35: Noon, 5km above the surface

38

When viewed from space, the neural network appears to make the edges of the atmosphere
thicker:

Neural network Reference Hillaire

FLIP errors:

← 0.213253 0.087223 →

Comparison 36: From space

12.2. Transmittance
For both the neural network model, as well as the new optical depth approximation, the
transmittance can be compared to a naive, raymarched reference, using 128 steps of Riemann
integration. The FLIP and RMSE error metrics for each model are found in Appendix C and
Appendix D. Note that as the transmittance is not directly used as an output image, using
FLIP to judge similarity may not be appropriate. In the comparisons below, FLIP is only

used to create a visual difference map.

When visually inspecting the transmittance from the new approximation, it results in slightly
more absorption near the horizon. This is expected, as the approximation gives a larger
optical depth than the reference, as seen in figure 8.

The neural network does noticeably worse, as it visually fails at giving the same colors. This
error is also reflected in a higher RMSE:

Neural network Reference Optical depth approximation

RMSE errors:

← 0.000722 0.000188 →

Comparison 37: Ground

39

Neural network Reference Optical depth approximation

RMSE errors:

← 0.005775 0.000226 →

Comparison 38: 5km from the ground

From orbit, it becomes more clear the approximation uses a different way of evaluating the
optical depth for the ozone layer, as there is a harsh cutoff that the reference does not have.
From this view, it becomes more clear the neural network mixes the ozone layer color into the
rest of the atmosphere:

Neural network Reference Optical depth approximation

RMSE errors:

← 0.000537 0.000107 →

Comparison 39: Ground

Neural network Reference Optical depth approximation

RMSE errors:

← 0.000118 0.000022 →

Comparison 40: From space

40

12.3. Performance
Here, the performance of the models is compared. As Hillaire’s model has different
performance characteristics when inside and outside the atmosphere, due to not using the
lookup table outside the atmosphere, the performance measurements are split up between
inside the atmosphere and outside the atmosphere.

For performance comparisons, many GPU’s from different vendors were tested. As different
GPU models from the same vendor do not exhibit completely different performance
characteristics, and to keep this comparison brief, only one GPU from each vendor is
represented here.

The performance data shown below shows the average runtime of each model, in milliseconds,
when rendering to a 1920 by 1080 Rgba32Float texture, for all views inside, and outside the
atmosphere. The viewpoint with the fastest time as well as standard deviation (stdev) are
provided as well.

The space view and planet shadow orbit view are not taken into account when plotting the
performance graphs. The reason for this is that they calculate the atmosphere for a different
amount of pixels than the ground, plane and orbit views, which results in different runtimes.

12.3.1. NVIDIA
Below are the tables for an NVIDIA RTX 3090, one with the viewer inside the atmosphere,
and one with the viewer outside the atmosphere. When the viewer is outside the atmosphere,
Hillaire’s model switches to raymarching the atmosphere, and uses a lookup table for its
transmittance calculation. It also has a larger step count (40) than Schuler’s model (24), and
thus becomes the second slowest model.

A somewhat unexpected result is that of Bruneton and Neyret’s model being slower than the
raymarched model.

Below are the time it takes for precomputation, as well as a bar plot for the average runtime
for each view. “out” means the viewer is outside the atmosphere, “in” means the viewer is
inside the atmosphere:

Model Time (ms)
Bruneton and Neyret 278.687

Hillaire 10.216

Table 2: NVIDIA RTX 3090, precompute times

41

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Runtime (ms)

Naive

Schuler

Hillaire

Raymarched

Bruneton,
Neyret

Flat

Neural network

Preetham,
Shirley, Smits

Empty

1.48828ms – in

0.40063ms – in

0.06933ms – in

0.16783ms – in

0.20964ms – in

0.05163ms – in

0.06135ms – in

0.04139ms – in

0.04005ms – in

0.71162ms – out

0.23852ms – out

0.57887ms – out

0.11255ms – out

0.11994ms – out

0.05243ms – out

0.05294ms – out

0.04134ms – out

0.04006ms – out

Figure 41: NVIDIA RTX 3090 timings

12.3.2. AMD
On AMD GPU’s, Bruneton and Neyret’s model, as well as Hillaire’s model, are consistently
faster than both the raymarched and neural network model, which is not the case on
NVIDIA GPU’s. On an AMD RX 9070 XT, the flat model becomes faster than both
Hillaire’s and Bruneton and Neyret’s model, when the viewer is inside the atmosphere. When
the viewer is outside the atmosphere, Hillaire’s model becomes the second slowest again.

The timings for an AMD RX 7600 are below:

Model Time (ms)
Bruneton and Neyret 145.339

Hillaire 21.872

Table 3: AMD RX 7600, precompute times

42

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Runtime (ms)

Naive

Schuler

Hillaire

Raymarched

Bruneton,
Neyret

Flat

Neural network

Preetham,
Shirley, Smits

Empty

3.72219ms – in

0.80838ms – in

0.14925ms – in

0.54255ms – in

0.21374ms – in

0.25328ms – in

0.2764ms – in

0.10421ms – in

0.10047ms – in

1.82364ms – out

0.4361ms – out

0.99626ms – out

0.2964ms – out

0.15483ms – out

0.25928ms – out

0.23584ms – out

0.10899ms – out

0.10048ms – out

Figure 42: AMD RX 7600 timings

12.3.3. Steamdeck
As the steamdeck is a more common device with a lower end AMD GPU, it is included as a
separate diagram. It matches the performance characteristics of the other AMD GPU’s
tested.

Model Time (ms)
Bruneton and Neyret 970.708

Hillaire 227.52

Table 4: Steamdeck GPU (AMD), precompute times

43

0 5 10 15 20 25 30
Runtime (ms)

Naive

Schuler

Hillaire

Raymarched

Bruneton,
Neyret

Flat

Neural network

Preetham,
Shirley, Smits

Empty

31.17802ms – in

6.58997ms – in

0.88127ms – in

4.87671ms – in

1.00016ms – in

1.69847ms – in

1.96341ms – in

0.66425ms – in

0.50602ms – in

15.37937ms – out

5.40587ms – out

7.72538ms – out

3.73984ms – out

0.72399ms – out

1.74284ms – out

1.39025ms – out

0.66427ms – out

0.50557ms – out

Figure 43: Steamdeck GPU (AMD) timings

12.3.4. Intel
Only one Intel integrated GPU was tested, which is the integrated GPU found in the Intel
Ultra 7 258V.

Of note is that when comparing the timings, the model by Preetham, Shirley and Smits runs
faster than the empty model, which is counterintuitive, as the empty model should not
perform more calculations than any of the actual models.

Model Time (ms)
Bruneton and Neyret 535.889

Hillaire 74.768

Table 5: Intel Ultra 7 258V iGPU, precompute times

44

0 1 2 3 4 5 6 7 8 9 10
Runtime (ms)

Naive

Schuler

Hillaire

Raymarched

Bruneton,
Neyret

Flat

Neural network

Preetham,
Shirley, Smits

Empty

9.73413ms – in

2.47832ms – in

0.35927ms – in

1.14354ms – in

0.56511ms – in

0.31558ms – in

0.51202ms – in

0.2068ms – in

0.22124ms – in

4.81586ms – out

1.35017ms – out

3.03659ms – out

0.71424ms – out

0.34617ms – out

0.33773ms – out

0.36501ms – out

0.20459ms – out

0.24364ms – out

Figure 44: Intel Ultra 7 258V iGPU timings

12.4. Implementation complexity
When counting the significant lines of code for all implementation, this is the result, ordered
from least to most lines of code:
1. Preetham, Shirley and Smits (58)
2. Flat (58)
3. Raymarched (74)
4. Neural network (94)
5. Schuler (106)
6. Naive (118)
7. Path tracer (147)
8. Hillaire (208)
9. Bruneton and Neyret (832)

Assuming that reference code is available, this code would simply have to be ported to the
desired shader language and graphics framework, which is roughly proportional to the lines of
code. For both the models by Hillaire, as well as Bruneton and Neyret, extra care has to be
taken to properly set up the precomputation steps, as well as required textures.

The precomputation of the model by Hillaire is quite simple, as only three lookup tables are
required, and they have a clear order in which they can be computed.

45

For Bruneton and Neyret’s model, this is more difficult. Despite the excellent documentation
in (Bruneton, 2017a), the required precomputation steps are still not thoroughly explained,
and as it requires more lookup tables, as well as extra intermediate steps to function. This
makes setting up the precomputation more error prone.

For the fitted models, both the model by Preetham, Shirley and Smits, as well as the neural
network model, the implementation complexity depends on whether the given parameters in
the reference code are desired or not. Both models require some reference to fit the model to.
This can be another atmosphere model, (Nishita et al., 1993) in case of Preeham, Shirley and
Smits’ model, and the path tracer for the neural network model.

For both fitted models, extra code is also needed to then fit the coefficients to the reference
data. In case of the neural network model, some manual work may be required as well, as not
all sets of coefficients fit the data as well as desired.

12.5. Overall
Overall, Bruneton and Neyret’s model, as well as Hillaire’s model, are the closest to the
reference visually. While Preetham, Shirley and Smits’ model is the fastest of all models
runtime wise, it is followed by both Bruneton and Neyret’s model, as well as Hillaire’s model,
when the viewer is inside the atmosphere. The flat model, and the neural network model
follow after this.

If multiple scattering is desired, both Bruneton and Neyret’s model, as well as Hillaire’s
model can be used, however, Hillaire’s model may come with a performance penalty when
used for viewers outside the atmosphere. If no multiple scattering is desired, the raymarched
model, or Schuler’s model can be used. If the viewer remains in the atmosphere, the flat
model provides an increase in performance, at the cost of visually performing worse when the
sun is below the horizon. The naive model, using numerical integration, should not be used
due to its high performance cost.

According to the raymarched model, Schuler’s model, and Hillaire’s model when the viewer is
outside the atmosphere, using an approximation for the optical depth provides a noticeable
speedup over numerical integration. Using a lookup table for transmittance results in a
similar speedup.

While the neural network model provides good runtime performance, it does not do well
visually. This may be improved with a larger neural network, that would also affect runtime
performance.

13. Conclusion
After comparing the implemented models, the questions from chapter 6 can now be answered.

The neural network model is a form of fitted model, and it works with both a viewer near the
ground, as well as a viewer in space. While performance differs between GPU vendors, it
remains close to lookup-table based models. The flat model remains close in performance to
the lookup-table based models as well, but the raymarched model is slower, even with the low
step count used.

The neural network model has to be retrained to change any of the atmosphere parameters
and properties. The flat and raymarched models, while not a fitted model, can work directly
with different parameters.

46

For both the flat and raymarched models, a different 𝜌(ℎ) than an exponential density is
possible, as shown by the ozone layer used in both models. The approximation used for the
optical depth is also able to approximate a non-exponential density profiles, according to
(Rapp-Arrarás & Domingo-Santos, 2011). This however was not verified in the comparisons
done.

14. Future work
The comparison done between Bruneton and Neyret’s model, as well as Hillaire’s model is
done using only the Rgba32Float texture format, with texture resolutions used as provided in
the reference implementations of these models. Of interest may be using different texture
formats, as well as resolutions to see if there is a performance tradeoff in doing so. The
transmittance lookup table from Hillaire’s model should also be compared against the optical
dept approximation introduced, as well as the one used in (Schuler, 2012).

The flat and raymarched models also do not model multiple scattering. This can likely be
added using a similar method to the one used in (Monzon et al., 2024), or (Schuler, 2018).
The approximation used for the optical depth in both these models is also only tested for an
exponentially decaying density atmosphere. While (Rapp-Arrarás & Domingo-Santos, 2011)
confirms it does work for different density profiles, they only test it with the viewer at a fixed
altitude. Extra work is likely required to make it work well with a varying viewer altitude.

References
Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M., Åström, K., & Fairchild, M. D.

(2020). FLIP: A Difference Evaluator for Alternating Images. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 3(2), 1–23.

Andersson, P., Nilsson, J., Shirley, P., & Akenine-Möller, T. (2021, May). Visualizing Errors
in Rendered High Dynamic Range Images. Eurographics Short Papers. https://doi.org/10.
2312/egs.20211015

Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P.,
Berard, D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison, A.,
DeVito, Z., Ellison, E., Feng, W., Gong, J., Gschwind, M., … Chintala, S. (2024). PyTorch
2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and
Graph Compilation. Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2, 929–
947. https://doi.org/10.1145/3620665.3640366

blackrack. Scatterer - Atmospheric scattering shaders. https://spacedock.info/mod/141/
scatterer

Bruneton, E. (2017b). A Qualitative and Quantitative Evaluation of 8 Clear Sky Models.
IEEE Transactions on Visualization and Computer Graphics, 23(12), 2641–2655. https://
doi.org/10.1109/tvcg.2016.2622272

Bruneton, E. (2017a,). Precomputed Atmospheric Scattering: a New Implementation.
https://inria.hal.science/inria-00288758

Bruneton, E., & Neyret, F. (2008). Precomputed Atmospheric Scattering. Computer Graphics
Forum, 27(4), 1079–1086. https://doi.org/10.1111/j.1467-8659.2008.01245.x

47

https://doi.org/10.2312/egs.20211015
https://doi.org/10.2312/egs.20211015
https://doi.org/10.1145/3620665.3640366
https://spacedock.info/mod/141/scatterer
https://spacedock.info/mod/141/scatterer
https://doi.org/10.1109/tvcg.2016.2622272
https://inria.hal.science/inria-00288758
https://doi.org/10.1111/j.1467-8659.2008.01245.x

Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic
radiation in an atmosphere on a rotating earth. Proceedings of the Physical Society, 43(1),
26. https://doi.org/10.1088/0959-5309/43/1/305

Cornette, W., & Shanks, J. (1992). Physically reasonable analytic expression for the single-
scattering phase function. Applied Optics, 31, 3152–3160. https://doi.org/10.1364/AO.31.
003152

Cranmer, M. (2023,). Interpretable Machine Learning for Science with PySR and
SymbolicRegression.jl. https://arxiv.org/abs/2305.01582

Digital Combat Simulator World. https://www.digitalcombatsimulator.com/en/products/
world/

Eckhart, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo Method. Los
Alamos Science, 131–137.

Elek, O. (2009). Rendering Parametrizable Planetary Atmospheres with Multiple Scattering in
Real-Time.

Fong, J., Wrenninge, M., Kulla, C., & Habel, R. (2017,). Production volume rendering:
SIGGRAPH 2017 course. ACM SIGGRAPH 2017 Courses. https://doi.org/10.1145/
3084873.3084907

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,
D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
Kerkwijk, M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., …
Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

Henyey, L., & Greenstein, J. (1941). Diffuse radiation in the Galaxy. \apj, 93, 70–83. https://
doi.org/10.1086/144246

Hillaire, S. (2015,). Towards Unified and Physically-Based Volumetric Lighting in Frostbite.
Advances in Real-Time Rendering in Games.

Hillaire, S. (2020). A Scalable and Production Ready Sky and Atmosphere Rendering
Technique. Computer Graphics Forum, 39(4), 13–22. https://doi.org/https://doi.org/10.
1111/cgf.14050

Hosek, L., & Wilkie, A. (2012). An Analytic Model for Full Spectral Sky-Dome Radiance.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2012), 31(4).

Jodie. (2019,). cheap sky simulation.

Kingma, D. P., & Ba, J. (2017,). Adam: A Method for Stochastic Optimization. https://
arxiv.org/abs/1412.6980

Kocifaj, M. (1996). Optical air mass and refraction in a Rayleigh atmosphere. Contributions
of the Astronomical Observatory Skalnate Pleso, 26, 23–30.

Kolda, T. G., & Bader, B. W. (2009). Tensor Decompositions and Applications. SIAM
Review, 51(3), 455–500. https://doi.org/10.1137/07070111X

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljačić, M., Hou, T. Y., & Tegmark,
M. (2025,). KAN: Kolmogorov-Arnold Networks. https://arxiv.org/abs/2404.19756

48

https://doi.org/10.1088/0959-5309/43/1/305
https://doi.org/10.1364/AO.31.003152
https://doi.org/10.1364/AO.31.003152
https://arxiv.org/abs/2305.01582
https://www.digitalcombatsimulator.com/en/products/world/
https://www.digitalcombatsimulator.com/en/products/world/
https://doi.org/10.1145/3084873.3084907
https://doi.org/10.1145/3084873.3084907
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1086/144246
https://doi.org/https://doi.org/10.1111/cgf.14050
https://doi.org/https://doi.org/10.1111/cgf.14050
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1137/07070111X
https://arxiv.org/abs/2404.19756

Microsoft Flight Simulator 2024. https://www.flightsimulator.com/microsoft-flight-simulator-
2024/

Monzon, N., Gutierrez, D., Akkaynak, D., & Muñoz, A. (2024). Real-Time Underwater
Spectral Rendering. Computer Graphics Forum, e15009. https://doi.org/https://doi.org/
10.1111/cgf.15009

Neumann, J. von. (1951). Various Techniques Uesd in Connection with Random Digits.
Journal of Research of the National Bureau of Standards, Applied Math, 36–38.

Nishita, T., Sirai, T., Tadamura, K., & Nakamae, E. (1993). Display of the earth taking into
account atmospheric scattering. Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, 175–182. https://doi.org/10.1145/166117.166140

Novák, J., Selle, A., & Jarosz, W. (2014). Residual ratio tracking for estimating attenuation
in participating media. ACM Trans. Graph., 33(6). https://doi.org/10.1145/2661229.
2661292

O'Neil, S. (2004,). Real-time atmospheric scattering. https://archive.gamedev.net/archive/
reference/articles/article2093.html

O'Neil, S. (2005). Chapter 16. Accurate Atmospheric Scattering. In M. Pharr & R. Fernando
(Eds.), GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation (Gpu Gems): GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-
Wesley Professional.

Perez, R., Seals, R., & Michalsky, J. (1993). All-weather model for sky luminance distribution
—Preliminary configuration and validation. Solar Energy, 50(3), 235–245. https://doi.org/
https://doi.org/10.1016/0038-092X(93)90017-I

Pharr, M., Jakob, W., & Humphreys, G. (2016). Physically Based Rendering: From Theory to
Implementation (3rd ed.) (3rd ed., p. 1266). Morgan Kaufmann Publishers Inc.

Preetham, A. J., Shirley, P., & Smits, B. E. (1999). A practical analytic model for daylight.
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques. https://api.semanticscholar.org/CorpusID:7993169

Rapp-Arrarás, Í., & Domingo-Santos, J. M. (2011). Functional forms for approximating the
relative optical air mass. Journal of Geophysical Research: Atmospheres, 116(D24), .
https://doi.org/https://doi.org/10.1029/2011JD016706

Schuler, C. (2012). An Approximation to the Chapman Grazing-Incidence Function for
Atmospheric Scattering. In W. Engel (Ed.), GPU PRO 3: Advanced Rendering
Techniques: GPU PRO 3: Advanced Rendering Techniques (1st ed., pp. 105–118). A. K.
Peters, Ltd.

Schuler, C. (2018,). Space Glider.

Suzuki, K., & Yasutomi, K. (2023,). Realistic Real-time Sky Dome Rendering in Gran
Turismo 7. https://www.gdcvault.com/play/1029434/Advanced-Graphics-Summit-
Realistic-Real

Terrell, R. (2016,). glsl-atmosphere.

Vasylyev, D. (2021). Accurate analytic approximation for the Chapman grazing incidence
function. Earth Planets and Space, 73, 112. https://doi.org/10.1186/s40623-021-01435-y

49

https://www.flightsimulator.com/microsoft-flight-simulator-2024/
https://www.flightsimulator.com/microsoft-flight-simulator-2024/
https://doi.org/https://doi.org/10.1111/cgf.15009
https://doi.org/https://doi.org/10.1111/cgf.15009
https://doi.org/10.1145/166117.166140
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1145/2661229.2661292
https://archive.gamedev.net/archive/reference/articles/article2093.html
https://archive.gamedev.net/archive/reference/articles/article2093.html
https://doi.org/https://doi.org/10.1016/0038-092X(93)90017-I
https://api.semanticscholar.org/CorpusID:7993169
https://doi.org/https://doi.org/10.1029/2011JD016706
https://www.gdcvault.com/play/1029434/Advanced-Graphics-Summit-Realistic-Real
https://www.gdcvault.com/play/1029434/Advanced-Graphics-Summit-Realistic-Real
https://doi.org/10.1186/s40623-021-01435-y

Wilkie, A., Vevoda, P., Bashford-Rogers, T., Hošek, L., Iser, T., Kolářová, M., Rittig, T., &
Křivánek, J. (2021). A fitted radiance and attenuation model for realistic atmospheres.
ACM Trans. Graph., 40(4). https://doi.org/10.1145/3450626.3459758

Yue, D. (2024). Analytical approximation of the definite Chapman integral for arbitrary
zenith angles. Atmospheric Chemistry and Physics, 24(8), 5093–5097. https://doi.org/10.
5194/acp-24-5093-2024

50

https://doi.org/10.1145/3450626.3459758
https://doi.org/10.5194/acp-24-5093-2024
https://doi.org/10.5194/acp-24-5093-2024

A: FLIP errors
FLIP errors Preetham, Shirley,

and Smits
Empty Raymarched Schuler Naive Hillaire Neural Net Flat Bruneton

and Neyret
ground-dawn 0.49564359 0.97566503 0.22362486 0.41188592 0.16566165 0.11073484 0.34731606 0.47711548 0.09809241

ground-sunrise 0.24515393 0.92652833 0.16458111 0.16321646 0.19359379 0.12071851 0.29608113 0.16371098 0.03308802
ground-noon 0.22209883 0.90915573 0.14701016 0.2058856 0.20784122 0.07796405 0.07380003 0.15026346 0.01935603
plane-dawn 0.97412103 0.97515351 0.64763862 0.88058525 0.57780761 0.30420122 0.72513878 0.93408012 0.28129065

plane-sunrise 0.89782381 0.9277581 0.32033435 0.31173941 0.33786449 0.13399105 0.40059972 0.30929685 0.05343369
plane-noon 0.68168336 0.84588838 0.26416466 0.29830816 0.30259022 0.10759243 0.3525098 0.27081707 0.04459071
orbit-dawn 0.80826867 0.97057861 0.27345997 0.28710017 0.26551905 0.40727559 0.47434133 0.66090101 0.41126001

orbit-sunrise 0.97256225 0.95243591 0.15076236 0.26375878 0.14113207 0.0641655 0.30828747 0.29419997 0.06427314
orbit-noon 0.96073997 0.88029242 0.12195973 0.14183527 0.14153102 0.07187424 0.2281246 0.20794494 0.05222957

space 0.5143919 0.96719503 0.09372713 0.10406315 0.09261382 0.08722282 0.21325293 0.226421 0.15413877
planet-shadow-ground 0.48114309 0.96296805 0.30747619 0.41281596 0.26425651 0.06620285 0.20270388 0.42022756 0.05699512
planet-shadow-orbit 0.79023546 0.96181011 0.16743426 0.2336743 0.16060859 0.12997645 0.25569162 0.33876443 0.14620577

B: RMSE errors
RMSE errors Preetham, Shirley,

and Smits
Empty Raymarched Schuler Naive Hillaire Neural Net Flat Bruneton

and Neyret
ground-dawn 3.97865605 0.97482044 0.00008048 0.0002448 0.00004764 0.00003619 0.00030104 0.01105675 0.00003364

ground-sunrise 0.00753167 0.82744461 0.00140716 0.00094494 0.00308942 0.00109592 0.02124281 0.00176891 0.00014694
ground-noon 0.00638251 0.81927776 0.00255514 0.00589603 0.00602361 0.00009313 0.00015921 0.0026469 0.00002464
plane-dawn 3.95045567 0.9558543 0.00023158 0.0008222 0.00008869 0.0000491 0.00108281 0.00202921 0.0000453

plane-sunrise 0.03052294 0.75808531 0.00129824 0.00113231 0.00245048 0.00011849 0.00556002 0.00116698 0.0000506
plane-noon 0.02289433 0.73097199 0.00350788 0.00615819 0.00631668 0.00007912 0.00254121 0.0036586 0.00002183
orbit-dawn 4.08668518 0.97941327 0.00102501 0.00645754 0.00020258 0.00003532 0.01249882 0.00992934 0.00017324

orbit-sunrise 0.04049467 0.92837852 0.00016845 0.0005017 0.00052833 0.00002512 0.00371327 0.00070512 0.00001186
orbit-noon 0.02664175 0.87550873 0.00157611 0.00226653 0.00247161 0.00001541 0.0032039 0.00149308 0.00001374

space 0.03107663 0.95405173 0.00086303 0.00104631 0.00118762 0.00001662 0.00068834 0.0013083 0.00000733
planet-shadow-ground 2.65018225 0.85214376 0.00200995 0.0040155 0.00188857 0.00032487 0.00429041 0.02545365 0.00027963
planet-shadow-orbit 2.96405864 1.12555254 0.00552621 0.04436417 0.01432145 0.00023957 0.21114185 1.40199077 0.00067625

51

C: FLIP errors, transmittance
FLIP errors Neural network Flat

ground 0.0906432 0.05242816
plane 0.21796529 0.07285634
orbit 0.06687886 0.02894559
space 0.02778055 0.01221722

planet-shadow-orbit 0.05516684 0.02228876

D: RMSE errors, transmittance
RMSE errors Neural network Flat

ground 0.00072169 0.00018785
plane 0.00577525 0.00022608
orbit 0.00053684 0.00010681
space 0.00011823 0.00002235

planet-shadow-orbit 0.00046473 0.00009816

E: Link to code repository
The public repository of the code used can be found here: https://git.science.uu.nl/vig/
mscprojects/a-visual-and-performance-comparison-of-atmospheric-scattering-models

F: Links to shadertoy versions of shaders
Below are the links to the shadertoy versions of the implemented shaders. Only Bruneton and
Neyret’s atmosphere is not implemented in shadertoy, as it is not possible to use 3D buffers.

• Flat: https://www.shadertoy.com/view/t3XBWH
• Raymarched: https://www.shadertoy.com/view/tXXBWH
• Neural Network: https://www.shadertoy.com/view/tXffD8
• Preetham, Shirley, Smits: https://www.shadertoy.com/view/WX2Bz1
• Naive: https://www.shadertoy.com/view/W3jBz1
• Schuler: https://www.shadertoy.com/view/WX2fR1
• Hillaire’s: https://www.shadertoy.com/view/wcdGRX
• Path tracer: https://www.shadertoy.com/view/Wfd3D8

52

https://git.science.uu.nl/vig/mscprojects/a-visual-and-performance-comparison-of-atmospheric-scattering-models
https://git.science.uu.nl/vig/mscprojects/a-visual-and-performance-comparison-of-atmospheric-scattering-models
https://www.shadertoy.com/view/t3XBWH
https://www.shadertoy.com/view/tXXBWH
https://www.shadertoy.com/view/tXffD8
https://www.shadertoy.com/view/WX2Bz1
https://www.shadertoy.com/view/W3jBz1
https://www.shadertoy.com/view/WX2fR1
https://www.shadertoy.com/view/wcdGRX
https://www.shadertoy.com/view/Wfd3D8

	Abstract
	Introduction
	Atmospheric scattering
	Coordinate system
	Physics of scattering

	Path tracing
	Finding the scattering position
	Light contribution
	Phase function
	Final color

	Previous work
	Single scattering
	Multiple scattering
	Fitted models

	Research goals
	Assumptions
	Model parts
	Coordinate space

	Ground truth
	Automatic model finding
	Reference data
	Observations
	symbolic regression
	Kolmogorov-Arnold networks
	Polynomial fit
	Neural networks
	Transmittance
	Scattering
	Implementation as atmosphere

	Manual modeling
	Flat homogeneous atmosphere
	Spherical atmosphere
	Looking down
	Views from space
	Ozone layer
	Multiple scattering

	Evaluation
	setup
	Implemented models
	Empty shader
	Path traced reference
	Bruneton and Neyret
	Hillaire
	Preetham, Shirley and Smits
	Naive
	Schuler
	Neural network
	Flat
	Raymarched

	Transmittance
	Reference
	Neural network
	Flat

	viewer, light, and exposure
	Visual comparison
	Performance comparison
	Implementation complexity

	Results
	Visual
	Bruneton and Neyret, Hillaire
	Naive and Schuler
	Raymarched and Flat
	Raymarched and Naive
	Flat and Preetham, Shirley and Smits
	Neural network

	Transmittance
	Performance
	NVIDIA
	AMD
	Steamdeck
	Intel

	Implementation complexity
	Overall

	Conclusion
	Future work
	References
	nvidia-flip errors
	RMSE errors
	nvidia-flip errors, transmittance
	RMSE errors, transmittance
	Link to code repository
	Links to shadertoy versions of shaders

